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 This paper presents an elastic analytical solution to 

a circular tunnel with releasing slots at high stress 

areas near the hole by using a conformal mapping 

method and the complex variable theory. Compared 

to  the original stress distribution around the 

circular hole, the releasing effect on elastic stresses 

is evaluated. After grooving slots, low stress area is 

generated where the high stress concentration is 

located. This  is agreeable with what was  predicted 

by the finite difference FLAC2D. Besides, 

displacements are obtained along the periphery of 

the released hole and are in accordance with those 

of FLAC2D. In addition to the intersection of the 

mapping contour, the influences of the sampling 

points distribution, series number in mapping 

function, and slot shape are discussed. It is 

inevitable that the mapping accuracies for the slot 

and the circle cannot be satisfied at the same time 

The mapping effect on the circle has to be 

considered primarily since the stress distribution 

around the circle is much more significant than the  

tunnel stability. The analytical solution can be  

available and fast method of estimating the 

releasing effect of the application on the tunnel 

without rock parameters. 
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1 Introduction 
 

As an underground structure, a tunnel is widely used 

in transportation, water conservancy, mining, and it 

extends  horizontally and vertically as human 

developing commands for resource and space.   

Putting more emphasis on safety and economy, more 

emergent but unpredictable failures in rock mass, 
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particularly in high in-situ pressure, result from 

excavation of activated tunnels . Some soft and 

sequential failures such as rock spalling or slabbing 

may be only costly nuisance, but the disruptive ones 

including rock burst are really dangerous for safety 

of the construction work force . 

 A number of researches are carried out about  rock 

spalling or slabbing in circular tunnels under high in 
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situ stress, and many approaches are also proposed to 

investigate the brittle fail process in the rock mass 

near the face of advanced excavation such as iterative 

elastic analyses (Curran and Corkum [1], Read [2]), 

strain-soften approach, (Carvalho et al[3]) and 

constant-deviatoric-stress criterion (Castro [4]). 

However, fracturing and breakout in rock mass can 

be attributed to accumulated strain energy relief 

caused by tunnel excavation when taking no account 

of their fail process and propagation rules, which was 

also stated by Martin [5]:One of the major risks 

associated with the stress-induced spalling in hard 

rocks is a  potential for violent release of stored strain 

energy. 

Aglawe [6] attempted to calculate the released energy 

of an opening extension simplified as a circle into an 

ellipse. However, the energy had to be increased with 

the increasing rock mass quality and this method is 

only appropriate for sudden failure. 

When a rock deteriorates rapidly,  in situ pressure 

increases extremely, and it is  inevitable that tunnel 

or other underground structures are deviated into new 

profiles from the previous ones. Compared with the 

self-adaptation and energy natural relief, 

technologies of rock pressure relief, including 

distress blasting and distress holes, have actually 

been an important option of supporting designation 

that was applied for decades in the underground 

constructions particularly in mine tunnels. Ortlepp 

[7] herein considered that the attempt to oppose 

irresistible movement by increasing strength of 

support is futile, but proposed that the supporting 

technologies had the objective of controlling the 

fracturing and potential disruption of the surrounding 

rock. For soft rock mass such as coal mine, distress 

holes or relief slots are applied widely in preventing 

rock burst in deep coal excavation in Germany, 

Russia and present China. Ortlepp [8] introduced the 

application of distress holes with large diameters in 

preventing potential rock burst in coal tunnels. 

Bleniawskiat [9] tested the pressure relief extent by 

using distress holes with different drilling parameters 

including the drilling diameters and hole pitches. Liu 

[10] concluded a technological principle by cutting 

different depth seams along the coal roadway in order 

to reduce width of coal pillar. Liu [11] carried out a 

combined supporting with pressure relief boreholes 

and bolt mesh in a coal tunnel. However, compared 

to better application of the pressure relief 

technologies, less studies and verifications about 

their mechanisms are proposed until numerical 

simulation is promoted (Liu [12], Sun [13], Song 

[14]). The availability of numerical methods is 

obvious in analyzing stress distribution in 

underground excavation and other engineering 

problems [15-16], yet some simplifications have to 

be taken when modeling and analyzing the 

underground excavation, which lead to a potential 

uncertainty in assessing the correctness of the 

simulation. Hence, an analytical solution by the 

classic methods is still important to promote the 

assessment, but few researches on the analytical 

solution of rock pressure relief in tunnel can be 

found. 

For circular holes in two-dimensional elastic plane-

strain condition, the stress-deformation can be given 

by Kirsch’s elasticity solution [17], but for most non-

circular caverns, the complex variable methods 

proposed by Muskhelishvili [18] have been applied 

widely. By using the method, Mitchell [19] solved 

the stress-concentration problem for a doubly 

symmetrical hole with two circles intersecting the 

opposite sides of the central one. Similarly, 

Exadaktylos [20] investigated a semi-analytical 

elastic solution of the notched circular cylindrical 

opening in isotropic and homogeneous rock. Based 

on a conformal mapping function, Lv [21] illustrated 

the stress analytical solutions for non-circular holes 

(e.g. semicircular, three-centered arch, horse-shoe). 

Zhao [22] found the analytical solution for rock stress 

around square tunnels in a homogeneous, isotropic, 

and elastic rock mass by using the complex variable 

theory. Furthermore, the elastic stress and 

displacement solutions for tunnels with support were 

investigated by employing the complex variable 

method. Savin [23] solved the problem of a circular 

hole strengthened by an elastic ring, Huo [24] 

investigated the analytical solution for deep 

rectangular structures with a far-field shear stress, Li 

[25] carried out an elastic plane solution for stresses 

and displacements around a lined tunnel under in situ 

stress, Lv[26] derived the stress and displacement 

field for a horse-shoe supported tunnel subjected to 

in situ stress based on a conformal transformation 

method. However, the assumption of homogeneity 

and isotropy in geomaterial and in situ stress may 

come into existence at high depth and in high stress. 

However,  the support consideration may not be able 

to keep a tunnel in practical stability under  the 

circumstance. 

The elastic stresses and displacements around a 

circular hole in isotropic and homogenous rock mass 

can be carried out by Kirsch solution, and breakouts 

may probably occur in the region of maximum 

tangential stress [27], which concentrates on two 

opposite sides of the boundary [28]. Hence, it is of 
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much feasibility to reduce the concentrated stresses 

by grooving relief slots or drilling boreholes in the 

high stress zone when the principle stress field in rock 

mass is known. However, it is difficult to groove even 

drill boreholes in hard rocks because of the low 

efficiency and high cost, but it is much easier to  

implement them in soft rocks technologically. 

With the consideration of complexity of stress 

distribution around non-circular holes (the high stress 

concentration is effected by hole shape significantly 

due to the possible cusps). This paper proposes a 

released circular tunnel by grooving two slots in the 

region of high stress concentration at tunnel 

periphery in isotropic and homogenous rock mass 

and investigates an elastic analytical solution by 

using a conformal mapping method [29] and the 

complex variable theory. The maximum principal 

stress is horizontal, while the minimum principal 

stress is vertical. By using the solution, the released 

stress distribution along the hole boundary is given in 

comparison  to the unreleased one obtained by Kirsch 

solution. Besides, the full-field stresses including 

tangential and radial stresses along the periphery and 

Ox- and Oy- axes, are evaluated when takingthe 

gradient effect into account. Moreover, the mapping 

availability of  the released hole is discussed. 

FLAC2D is employed to be in comparison with the 

analytical solution in this paper. 

 

2 The Analytical Methods 
 

2.1 Conformal mapping representation 
 

For some contours (e.g. circle, ellipse even square), 

the mapping functions may be simple or investigated 

previously. As the key of analytical accuracy and 

solution feasibility, it is of much significance to 

acquire the mapping function of a certain shape 

established by a proper method. 

For every point i
ia

z x y re   in exterior of a 

simple closed curve in z-plane, there exists the 

corresponding point i
i

e


      in exterior area 

of the unit circle in -plane mapped (Fig.1) by the 

mapping function as Laurent series 
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where the constant coefficients 
0

 ，
2 1k




(k=1,2…,n) are real numbers when the loading and 

geometry configuration are symmetric to both Ox

and Oy -axes. The mapping function can be 

trigonometrically transformed as follows: 
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Figure 1. The released hole with doubly symmetric  

                slots in z–plane and the unit circle in  - 

                plane. 

Note that the points describing the contour in z-plane 

and those representing the unit circle in  -plane 

should move in the same direction (anti-clockwise 

sense is chosen  as shown in Fig.1). 

There are a number of methods to establish the 

mapping function such as complex method or Faber 

series method. Few researches nonetheless 

investigated the mapping problem of contour with 

great distortion in limited scale (e.g. the relief slot in 

this paper). By using the conformal mapping method 

established by Huangfu [27], the mapping contour 

and the mapping function can be obtained as follows: 

(i) The contour line C in z-plane is divided into (m+1) 

sampling points 
0 0 0
( , )z x y  (the number m and points 

distribution are determined by the complication and 

the mapping accuracy requirement). Similarly, (m+1) 

corresponding points (1, )i i  need to be represented 

to the unit circle. In the first approximation, the 

division of the unit circle can be taken as 2 / m 

equidistantly. The constant coefficients
0

 ,
2 1k




(k=1,2…,n) in the first iteration can be calculated as 

 

 
T -1 T

AX = B

X = (A A) A B
 (3) 

 



Engineering Review, Vol. 38, Issue 3, 338-351, 2018.  341 
________________________________________________________________________________________________________________________ 

where 
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(ii) After the first iteration, the new points and their 

Cartesian coordinates
1

B at z-plane can be calculated 

by the first mapping function
1 1

( )z w  , and the 

distances 
1

i
l of every two adjacent new points and 

their sum
1

C are also calculated. An assumption 

herein is taken that the ratios of 
1

i
l

 
to 1C   are equal to 

those of distances
1 'il of every two adjacent unknown 

points on the original contour to its known perimeter

C as Eq.(5). The Cartesian coordinates of the 

unknown points are used as new input and substituted 

into the mapping function. Subsequently, a modified 

mapping function with new coefficients
0

 ,
2 1k




(k=1,2…,n) can be established. 
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C C
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(iii) The iterative procedure is continued until the 

mapping accuracy is satisfied. The criterion can be as 

follows 

 

 
s

C



  (6) 

 

Where s is the arithmetic mean value of distances 

between all mapping points
i

B and the corresponding 

points '
i

B . 

Fig.2 illustrates approximation of the quarter square 

boundary with side length of 5m (   and n=8). 

Fig.3 (a) Illustrates the mapping results for notched 

circular cylindrical opening using the mapping 

method introduced by Exadaktylos [20] and the 

method  when n=4. 

Fig.3 (b) Shows the mapping results for the straight 

wall and semicircle arch using the proposed method 

and the optimization technique derived by Lv [21] 

when n=6 (densities of sampling points are 

consistent). It is evident that the mapping accuracies 

of the proposed method are better than others 

obtained by the conventional methods. Besides, the 

proposed method can be programmed more easily, 

which is of much significance to its application. 

Fig. 4 illustrates approximation of the released hole 

by using the method above with n=8 and n=14, 

respectively. There is an intersection at the mapping 

slot existing in both situations. The cause and effect 

of the intersection will be discussed below. 

 

 
Figure 2. Approximation of the quarter square 

boundary with length of 5m. 

 

2.2 The complex variable theory 
 

When the mapping function is taken as a finite 

Laurent series, the potential function can be 

simplified as Cauchy integral as follows [16]: 
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                                           (a)                                                                                   (b) 

 

Figure 3. The comparison of the mapping results between the conventional method and the proposed mapping  

                method: (a) The quarter boundary of notched circular cylindrical opening (R1 is a radius of circular  

                opening); (b) Straight wall and semicircle arch. 
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Figure 4. The approximation of the released hole. 

 

where ( )w   and ( )w  are boundary values of ( )w 

and
1

( )


respectively,  is the angle between the 

maximum principle stress and horizontal direction 

( 0 90   ). 

By conjugating Eq. (7), Eq. (9) is obtained as 
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wheretheconstant coefficients
2 1
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Actually, it is insignificant for solving 
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0
( )  can also be represented as a finite series as Eq. 

(12). 
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According to the mapping rule of exterior-exterior in 
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and hence is not essential to be solved. 

By substituting Eq. (8), (12) and (13) into (7), the 

Cauchy integral can be represented as 
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By comparing the same power of  , Eq. (15) can be 

expressed in matrix form as 
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The solution of the linear algebra Eq. (15) for the 

constant coefficients
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  gives the first 

complex potential function as: 
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By conjugating Eq. (15) 
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The second complex potential function can be 

obtained as 
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Hence,
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u ,
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u  can be computed by Eq. 

(21). 
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where
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3 4   in plane strain 

problem. 

 

 

 

 

3 The results 

 

In this section, a circular hole with radius of 5m is 

investigated, and two symmetric pressure-relief slots 

are used  at top and bottom of the hole with N1=15 

MPa and N2=9 MPa The depth and width of the slot 

are 2 m and 0.14 m, respectively. Meanwhile, the 

released stress distribution around the released hole 

is compared with the unreleased result obtained by 

Kirsch solution without support (Eq. (22)). 
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A finite difference model (Fig.5 (a) and (b)) 

established by the FLAC2D is also used  to verify the 

analytical solution. 

Fig.6 (a) illustrates  along the peripheries of the 

circle and the released hole (the slot boundary is also 

considered). Compared with  of Kirsch solution, 

the released stress variation shows that there is a 

superposition with the Kirsch solution result in

0.6   It then increases when 0.6 1  until it 

reaches the local maximum at 1  . After that a 

sharp decrease is taken in1 1.4  , then a rapid 

increase occurs when 1.5 2   . It is of much 

significance that the tangential stress of the analytical 

solution is almost less than that of the Kirsch solution 

in the scale except1.5 2   . Moreover, Fig.6 

(b) represents the hoop stress along the periphery of 

the doubly symmetric hole [18], which shows similar 

regularity with  variation of the released hole in 

reversal of in Fig.6 (a). Besides,  variation of the 

analytical solution is in accordance with that of 

FLAC showed in Fig.6 (a). 

Due to the stress-gradient effect, stress distribution in 

rock mass along the tunnel depth is of great 

significance for stability of rock mass [25].  
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(a) (b) 

 

Figure 5. The FLAC2D finite difference model for the released hole. 

 

        
                                           (a)                                                                                     (b) 

 

Figure 6. Comparison of  along the periphery and the circular hole: (a) The released hole; (b) The doubly  

                symmetric hole. 

 

Fig. 7 illustrates comparison of  and r alongOx -

axis ( 0  ) for the released hole and the circle. 

Correspondingly, this paper alsocompares  stresses 

along theOy -axis ( 2  ) in Fig.8. 

Fig.9 presents a comparison of displacement 

variations along the released hole boundary obtained 

by the analytical solution and FLAC2D ( 1E GPa ,

0.2  ). The results are in good agreement. 

 

 

 

 

 

4 Discussion 

 

4.1 The intersection of mapping contour 
 

In this paper, an intersection on the mapped contour 

exists, which is significant to correctness of the 

analytical solution. According to the conformal 

mapping theory, the mapping efficiency may be 

influenced by density of the sampling points and 

series number. Besides, the mapping availability may 

also be affected by the contour shape in geometry, so 

the slot shape has to be considered. In this paper, the 

three factors above are investigated. 
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                                            (a)                                                                                (b) 

 

Figure 7. Comparison of the released hole and the circular hole along Ox -axis ( 0  ): (a) Tangential  

                stress; (b) Radial stress. 

 

  
                                           (a)                                                                                  (b) 

 

Figure 8. Comparison of the released hole and the circular hole along Oy -axis ( / 2  ): (a) Tangential 

stress; (b) Radial stress. 

 

(i) The slots adjacent to the hole are independent of 

the circular part geometrically, so when sampling the 

points, 1 2n n is taken to estimate the effect of density 

of sampling points on the mapping contour (the 

original contour is given in Fig.4, n=8), as shown in 

Fig.10.The variations of tangential stress with 

different 1 2n n along periphery of the released hole 

are given in  Fig.11. 

As is shown in Fig.10, teardrop at top of the contour 

is mapped for the slot with low 1 2n n , and it shrinks 

by increasing 1 2n n and disappears when

1 2
0.4.n n   This can be attributed to the increasing 

sampling points for the slot as those representing the 

circular part decreasing reversely. 

However, it is also apparent that the circular contour 

is rougher with increasing 1 2n n , which may lead to 

a deviant variation in stress distribution as showed in 

Fig. 10 (N1=15 MPa and N2=9 MPa). Compared with 

the monotone increase with
1 2

0.08n n  , humping 

curves are acquired with 1 2 0.2n n   in 0.8  . By 

calculating angles of the bulges at periphery in the 

polar coordinates, for instance, the angles are about

26 and  respectively ( 0  at Ox -axis) with

1 2
0.4n n  , which is in good accordance with the 

radians (near 0.45 and 0.85) of the peaks in Fig.11. 
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However, the hump is of great discrepancy with the   

FLAC results. In fact, the stress variation around the 

circular part ( 1.4  ), rather than that of the slot, is 

more significant in  evaluating the tunnel stability. 

(ii) It is understandable that series number in the 

mapping function has significant influence on 

availability of the method. Fig.12 enumerates the 

mapping contours with different series numbers. As 

the series number n increases, the mapping 

availability in circular part generally improves, the 

intersection is arising but not being vanished, and the 

teardrop extends horizontally. Hence, even though 

the increasing series number contributes to accuracy 

of the circle, it deteriorates the availability of the 

relief slot and is not beneficial to eliminate the 

intersection. 

 

 
 

Figure 9. Comparison of displacement around the  

                released hole between FLAC2D and the  

                analytical solution. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Approximation of the mapping contours of the released hole: (a) n1/n2=0.08; (b) n1/n2=0.2; 

                  (c) n1/n2=0.4; (d) n1/n2=0.6. 

 

(iii) There is no intersection produced in the known 

noncircular contours including rectangle, semicircle 

even the notched circle by conformal mapping 

method, so shape of the thin slot has to be considered 

as restriction for approximating availability. Fig.13 

illustrates approximations of the released holes with 

different w h of slots (
1 2

0.2n n  ).It is conspicuous 

that the teardrop diminishes by increasing w h , and 

even transforming into cusp when 0.4w h  , which 

implies that the contour with more regular geometry 

may be mapped easier by the mapping method. 

Fig.14 illustrates approximation of  along the 

periphery of released holes with differen w h

thevariations of  and r along Ox -axis are shown 

in Fig.15 and Fig.16, respectively (N1=15 MPa and 

N2=9 MPa). It is apparent that increasing of w h has 

no significant effect on the releasing effect since all 

the stress curves are  intertwined.  

 
Figure 11. Variations of tangential stresses along the  

                 released hole periphery with different  

                 n1/n2 (N1=15 MPa and N2=9 MPa). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. Approximation of the mapping contours of the released hole: (a) n=5; (b) n=8; (c) n=14; (d) n=20. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Approximation of the mapping contours of the released hole (n1/n2=0.2): (a) w/h=0.1; (b) w/h=0.2;  

                 (c) w/h=0.3; (d) w/h=0.4. 

 

In fact, it is impossible to take a wide slot 

technologically and economically in practical 

construction (w=0.8m in Fig.13 (d)). In this paper, 

the width of the slot recommendedis mainly only 

0.14m. 

 
Figure 14. Approximation of the tangential stress  

                  along the released holes periphery  

                  (N1=15 MPa and N2=9 MPa). 

 

 

 

4.2 Elastic stress distribution 
 

As is shown in Fig.6 (a) and Fig.14, there is a rigid 

decrease of tangential stress along the periphery of 

the released hole when 1  . In other words, low 

stress area substitutes for high stress concentration 

after pressure releasing. However, this effect on 

stress distribution may decay as the distance to the 

slot increases, which is proved by the stress 

variations agreement of the analytical solution and 

Kirsch solution in scope of 0.6  in Fig.6 (a). 

Besides, the sharp increase of   can be attributed 

after the previous decrease to the stress transfer 

caused by the relief slot. The maximum  obtained 

by the analytical solution and the simulation are 

30.891MPa and 36.924MPa respectively in Fig.6 (a), 

which are close to 36MPa calculated by the Kirsch 

solution (
1 2

3N N


   ) [30]. However, the 

maximum is transferred into the rock mass with depth 

of 2m (r/R=0.4 in Fig. 8). 

In addition, it is also obvious that different releasing 

effects on   and r  are produced as shown in 

Fig.7 and Fig.8.  

The peak stresses are generated at / 0.3r R  along 

the Ox -axis in both the unreleased hole and released 
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hole because of the lateral pressure coefficient in 

Fig.7 (a). However, the peak of the released hole is 

lower due to the pressure relief effect andin spite of 

this, the effect decreases rapidly when  the depth in 

rock mass increases.As a  result of the analytical 

solution, simulation and the Kirsch solution are in 

approximation when / 1r R  in Fig.7 (a) and Fig.8 

(a). By contrast, there is a lower effect on r  as a  

good agreement between the released and 

unreleased stresses along the Ox -axis. Moreover, 

the sharp decrease of r in Fig.8 also proves  the 

rapid collapse of releasing effects by increasing the 

depth. Besides, there is great stress concentration at 

top of the teardrop, which may leads to overlarge 

stress (e.g. 184.31


  MPa) and is not illustrated in 

Fig.6 (a) since it is beyond the scale. The stress 

concentration is also the reason of high radial 

stresses proved by the analytical solution and 

FLAC. 

Fig.16 illustrates the contours of   and r  around 

the released hole with 0.07w h  (N1=15 MPa and 

N2=9 MPa). There are distressed zones on both sides 

of the teardrop, but a high stress concentration is also 

generated at its top and may lead to yield and fail in 

rock mass in plastic situation. 

 

 
                                              (a)                                                                               (b)  

 

Figure 15. Approximation of stresses along the Ox -axis (N1=15 MPa and N2=9 MPa): (a)Tangential stress;  

                  (b) Radial stress. 

 

 
 

distressed zones 

high stress concentration 

high stress concentration       

distressed zones 

high stress concentration 

high stress concentration 
 

 

                                             (a)                                                                                (b) 

 

Figure 17. Stress contours around the released    hole (N1=15 MPa and N2=9 MPa): (a) Tangential stress;  

                  (b) Radial stress 
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5 Conclusion 

 
(1) By using a conformal mapping method and the 

complex variable theory, an elastic analytical 

solution to circular tunnel with releasing slot was 

studied in isotropic and homogenous rock masses. 

FLAC2D was used  in this paper to verify the 

reasonability of the analytical results. 

(2) The tangential stress   along the periphery of 

the released hole is lower than that of the Kirsch 

solution.  Two low stress areas adjacent to the slot 

were developed, while the high stress area was 

transferred into the rock mass by the releasing effect. 

(3) The releasing effect decays rapidly when 

increasing distance from the hole boundary to far 

field.Compared with the  , the effect upon r  is 

lower. 

(4) When increasing the sampling points for slot, the 

intersection of the mapping contour may disappear 

with less mapping accuracy of the circular part.  

Increasing the number of terms in mapping function 

is merely beneficial to mapping accuracy of the 

circular part, but it does not contribute to elimination 

of the intersection. Besides, it is easier to acquire the 

mapping contour without intersection for wider slot, 

but increasing the width of the slot is not beneficial 

for enhancing the releasing effect. 
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Nomenclature 

 
( )r, , the polar coordinates in z-plane; 

( )x, y , the Cartesian coordinates in z-plane; 

( , )  , the polar coordinates in -plane; 

( , )  , the Cartesian coordinates in -plane; 

m+1, number of sampling points; 

n, series number of mapping function; 

C, perimeter of the original contour; 

N1, the horizontal maximum principle stress; 

N2, the vertical minimum principle stress; 

R, radius of tunnel; 

c, cohesion; 

 , friction angle; 

E, elastic modulus; 

 , Poisson ratio; 

G, shear modulus; 

r
  , 


  , 

r
 , tangential, Radial and Shear stress; 

x
u , 

y
u , x - displacement and y-displacement; 

( )w  , mapping function; 

1
( )w


, conjugation of mapping function; 

( )  , the first complex potential function; 

( )  , the second complex potential function; 

, slot width; 

h, slot depth; 

n2, number of sampling points for circle; 

p
a , distance of the tunnel center to plastic zone  

       boundary. 
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