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 This paper presents a validation of newly 
developed material model for concrete. The model 
is based on a combination of elasto-fracture-
plastic formulation, considering all dominant 
influences in concrete: yielding in compression, 
fracture in tension, softening and hardening. The 
modified Mohr-Coulomb criterion for dominant 
compression stresses, the modified Rankine criterion 
for dominant tension stresses, exponential softening 
and the function for hardening are considered in 
this model. All constitutive equations are defined by 
elementary material parameters (Young’s modulus 
of elasticity, Poisson’s coefficient, maximal uniaxial 
tensile and compression stresses, the coefficient of 
tensile correction, maximal tensile and maximal 
compression strains). A multi-surface presentation 
of the model is implemented which permits the rapid 
convergence of the mathematical procedure. The 
model uses return-mapping algorithm for the 
integration of the constitutive equations with 
associated and non-associated flow rules. 
Considering triaxial stress state, the paper presents 
the structural validation of a developed numerical 
model, which is incorporated into computer 
programme PRECON3D, illustrated on four 
examples, both experimental and numerical, taken 
from the literature: (i) four point bending of normal-
strength and high-strength reinforced concrete 
beams with four different constant-zone lengths and 
two different reinforcement ratios; (ii) three point 
bending of reinforced concrete beam; (iii) 
prestressed concrete beam; (iv) prestressed Π-beam. 
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1 Introduction 
 
Some time ago, we developed a computer 
programme called PRECON3D [1] and [2], for a 

three-dimensional non-linear analysis of reinforced 
and prestressed concrete structures where the 
structures are discretized by three-dimensional 
finite elements with an embedded one-dimensional 
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element of reinforcement and prestressed tendons. 
Non-linear triaxial behaviour of concrete is 
involved in the material model, including all 
dominant influences in concrete (yielding in 
compression, fracture in tension, softening and 
hardening) [3]. The non-linear behaviour of 
reinforcement and prestressed tendons is described 
by the one-dimensional elasto-viscoplastic model. 
The perfect or full bond is assumed, but the bond-
slip effect is not included. The tendon element 
geometry is described by the second order space 
function which is determined by its projections [4]. 
The reason for doing that were the following 
phenomena which have been noticed performing the 
analyses of prestressed concrete structures: non-
linear and non-elastic behaviour, damage causing 
degradation of linear-elastic matrix constants, non-
linear behaviour after peak stress, multiaxial and 
non-linear distribution of strain causing the 
development of cracks, hardening of non-cracked 
concrete between two cracks, interface of concrete 
and reinforcement bars, distinctly triaxial stresses 
around the anchors. Due to this highly complex 
behaviour, prestressed beams are exposed to various 
expensive experimental tests before being 
embedded in a structure. An appropriate numerical 
model for describing distinctly non-linear triaxial 
behaviour of concrete and an accurate description of 
geometry allow the analysis of these structures via 
numerical tests. 
In the first part of the paper, the main constitutive 
equations of the fracture and plastic models, i.e. a 
non-linear triaxial behaviour of concrete [5] will be 
presented, which is involved in the material model, 
including all dominant influences in concrete 
(yielding in compression, fracture in tension, 
softening and hardening). 
In the second part of the paper, a computer 
programme PRECON3D [1], which can be used 
very simple because the material model is defined 
by elementary material parameters (Young’s 
modulus, Poisson’s coefficient, maximal uniaxial 
tensile and compression stresses, coefficient of 
tensile correction, maximal tensile and maximal 
compression strains) will be presented through 
numerical testing of the prestressed concrete girders 
from the engineering practice. 
Therefore, the paper presents the structural 
validation of developed numerical model, 
PRECON3D [1], on a few examples and the 
obtained results will be compared with the known 

numerical and experimental ones. Furthermore, 
from the performed numerical analyses, it will be 
concluded that the presented programme and 
numerical model can be effectively used in 
nonlinear analysis of reinforced and prestressed 
concrete structures. 
 
2 Developed numerical model 
 
Nonlinear behaviour of concrete is described by an 
elasto-plastic modified material model which is 
based on the Mohr-Coulomb law for dominant 
compression stresses and the Rankine law for 
dominant tensile stresses, [2] and [3]. A multi-
surface presentation of the model (Fig. 1) is 
implemented in the model, enabling thus a rapid 
convergence of the mathematical procedure. The 
non-linear, triaxial behaviour of concrete is 
included in this model, with all dominant influences 
in concrete such as yielding in compression, 
cracking in tension, softening and hardening of 
concrete. 
 

 
 
Figure 1. Multi-surface presentation of material 

model for concrete. 
 
For the description of all of these parameters, it is 
necessary to define: (a) a fracture model for 
concrete with the tensile softening of cracked 
concrete and stress-strain relation of cracked 
concrete; (b) a plasticity model for concrete with 
softening and hardening with respect to the total 
plastic strain. 
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2.1 Fracture model for concrete 
 
Previous research papers have shown that one of the 
most reliable material laws for describing the 
behaviour of concrete under dominant tensile stresses 
is the Rankine material law. This law has been 
chosen for the application given that it has a simple 
mathematical interpretation and its predictions have 
proven to agree well with experimental results. 
According to the Rankine material law, concrete 
softens in tension when at least one principal tensile 
stress reaches the tensile strength of concrete. In the 
domains where the compressive stress (c) appears, 
the experiments have determined that the tensile 

strength depends also on the magnitude of those 
compressive stresses [6]. Consequently, it is 
necessary to reduce the tensile strength which 
depends on the number of compressive stresses in 
the considered domain. In Fig. 2, red is the reduced 
tensile strength, i (i = 1, 2, 3) are the principal 
tensile stresses in the considered directions, and c  

is the compressive strength of concrete. After the 
appearance of the first crack, it is assumed that its 
direction will stay fixed for the following load 
increments and that the following cracks will appear 
perpendicularly to the first one. 
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Figure 2. Final reduction of normal stresses and plane of cracking in all combinations for compressive and 

tensile behaviour in eight octahedral (tension-tension-tension (t-t-t), t-t-c, t-c-t, t-c-c, c-t-t-, c-t-t, 
c-c-t, and compression-compression-compression (c-c-c)). 

 
In the considered model, the tensile softening is 
simulated by the linear decrease of tensile stresses 
perpendicular onto crack plane as shown in Fig. 3 
with the variations of modulus of elasticity during 
the loading (Fig. 3(a)) and unloading (Fig. 3(b)) 
paths of cracked concrete. 
The value of parameter ω is taken to be 0.5 
according to [7]. 
The applied model assumes that the loading, 
unloading and reloading paths of cracked concrete 
follow the linear constitutive law with a fictitious 
modulus of elasticity defined by: 
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where α and tmax are parameters defining tensile 
softening and i is the maximal tensile strain in the 
observed Gaussian point, which is remembered for 
any integration point and any crack direction. As the 
material behaviour changes in correlation with the 
parameter α, the changes are relatively small, and it 
is recommended to use α = 0.6 according to [8]. The 
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parameter α can be considered as an artificial 
material characteristic as: 
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tc
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taking into account fracture energy, Gf, 
characteristic length of the sampling point, lc, and 

the uniaxial tensile strength of concrete, '
t . 

Three significant moments are monitored: (i) the 
appearance of the first crack that reduces the 
appropriate coefficients of the material constant 
matrix; (ii) the appearance of the second crack at the 
same integration point (perpendicularly to the first 
crack), which again reduces the appropriate 
coefficients; (iii) the appearance of the third crack at 
the same integration point perpendicularly to the 
first two cracks. 
In modelling the stress-strain relation of cracked 
concrete, it is assumed that the concrete changes 
from isotropic to orthotropic material with its axis 
oriented toward the maximal tensile stress (Fig. 4). 
 

 
(a) loading 

 
(b) unloading 

 
Figure 3. Tensile stiffening model for cracked 

concrete: (a) loading; (b) unloading. 
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Figure 4. Stress states: (a) initial stresses in the Cartesian coordinate system; (b) principal stresses; 

(c) stresses in the cracked concrete defined in a local coordinate system x*-y*-z*. 
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It is also assumed that a crack is formed in the plane 
perpendicular to principal tensile stresses which are 
assumed to be greater than the tensile strength or 
the reduced tensile strength of concrete, depending 
on the domain where the stresses have been 
calculated. In such a coordinate system, a 
constitutive stress-strain increment relation is 
considered and afterwards transferred into a global 
coordinate system. The stress state defined in the 
global coordinate system x-y-z is mapped onto the 
plane of the crack. In this plane a new coordinate 
system x*-y*-z* is formed in which the constitutive 
law of the stress-strain relation is established. It can 
be noticed that this local coordinate system 
coincides with the coordinate system of the 
principal stresses at the moment of the formation of 
the first crack (Fig. 4). 
The matrix D* is the material matrix of the cracked 
concrete which, in the case of the appearance of one 
crack (e.g. in the direction 1), is defined as: 
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whereas in the case of the appearance of two cracks 
(e.g. in the directions 1 and 2), it is defined as: 
 

 
  

 
  

 
  

*

*

*












31

23

12

*
2

*
1

00000

00000

00000

000
211

1
00

0000
211

1
0

00000
211

1

**

G

G

G

E

E

E

D

 (4) 

 
Other material parameters in Eqs. (3) and (4) are the 
reduced shear moduluses for the softened concrete, 
G12*, G23* and G31*, which can be defined by the 
equation: 

 GG *  (5) 

 
where G is the initial shear modulus of the 
uncracked concrete and η is the reduction 
coefficient. This coefficient is calculated here as: 
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In case of the appearance of three cracks at one 
Gaussian point (in the directions 1, 2 and 3), it is 
necessary to correct the moduluses of elasticity 
according to Eq. (1) and the shear moduluses 
according to Eq. (5). When the values of strain 
exceed a prescribed maximal strain (max) values in 
Gaussian points, one can assume that D* = 0 and 
that the failure of the material occurs. 
 
2.2 Plasticity model for concrete 
 
The non-linear behaviour of concrete for dominant 
compression stresses is described by an elasto-
plastic material model based on the Mohr-Coulomb 
law. At multi-surface model presentation, the 
yielding surface is composed of six planes in the 
area of main stresses, defined by the following 
expressions: 
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Implementation of a multi-surface presentation of 
the model (Fig. 5) enables a rapid convergence of 
the mathematical procedure. For dominant 
compression stresses, a matrix of consistence is 
developed for each sextant separately. In Eq. (7), c 
is the function of equivalent accumulated plastic 
strains obtained from a uniaxial test and can be 
expressed as: 
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where the relation between  and p , proposed by 
Meschke [9], is given as: 
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where p
c  is the value of p  at  = c , and cy is 

cohesion on the initial yield surface that bounds the 
initial elastic response. The coefficient cy in Eq. (9) 
is equal to 0.52 according to [9]. Equation (9) 
defines the hardening rule. 
 

yield surface at t n
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Figure 5. Triaxial presentation of the yield surface 

development defined by the hardening 
rule. 

 

The softening law is controlled by the function for 
uniaxial compression, originally proposed by van 
Gysel and Taerwe [10] in the form: 
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where p
c

pn  /1  and p
c

p
c tn  /)(2 . 

Parameter t controls the slope of the softening 

function. The complete elastic, hardening and 
softening functions of concrete with respect to the 
total plastic strains are presented in Fig. 6. 
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Figure 6. Hardening and softening functions with 

respect to the total plastic strains. 
 
2.3 Material model of prestressed tendons 
 
The non-linear behaviour of prestressed tendons is 
described by a 1D elasto-viscoplastic model. The 
tendon element geometry is described by a second 
order space function which is determined by its 
projections [4]. These elements make it possible to 
model arbitrarily curved prestressing tendons in 
space, therefore they can be determined 
independently of a 3D finite element mesh. This is 
very important in the case when the prestressing 
tendon cannot be located in one plane, (Fig. 7). The 
transfer of prestressing force onto the concrete is 
modelled numerically (Fig. 8). 
Among losses influencing the decrease in the 
prestressing force, it is possible to compute the 
losses caused by friction and the ones resulting from 
the concrete deformations. The developed model 
makes it possible to compute prestressing structures 
in phases: before, during and after prestressing. The 
described models for concrete and reinforcement 
are implemented in a computer programme for a 3D 
analysis of the prestressed concrete structures where 
the structures are discretized by 3D finite elements 
with an embedded 1D element of prestressed 
tendons. 
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Figure 7. Space curvature of prestressing tendon. 
 

          
 
Figure 8. Numerical interpretation of prestressing force. 
 
For a 3D analysis, the components that remain the 
same are: 
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Performing the Gaussian numerical integration of 
Eq. (11), one can obtain the values of the distributed 

load components along the tendon in the Gaussian 
points of the 1D tendon element (Px

g.p., Py
g.p. and 

Pz
g.p.). 

To determine the influence of this distributed load 
along a 1D tendon element on the concrete element, 
it is necessary to map the coordinates of the 
Gaussian points from the global coordinate system 
to the local coordinate system of the parent concrete 
element. Finally, the components of the equivalent 
nodal forces due to the distributed load along the 
tendon defined in the global coordinate system can 
be expressed as: 
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3 Torsion of the tendons represented by 
space curvature 

 
In the prestressed structures discretized with a 3D 
model, the tendon sometimes cannot be placed into 
one plane in all its length. The influences along the 
tendon appearing as effects of the tendon forces 
depend on the curvature of the tendon k(s), which is 
characterized by a deviation of the axis of the 
tendon from the tangent on the tendon and by the 
changes in the position of a binormal [4]. Binormals 
are not mutually parallel but form an angle . The 
consequence of these changes is the torsion of the 
tendon , and it can be mathematically expressed 
as: 
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where  is the angle between unit vectors b and b0 
of the binormals drawn in two considered 
neighbouring cross-sections. 
The binormal can be expressed as: 
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equation can be obtained: 
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Introducing Eq. (16) into Eq. (15) one can obtain: 
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Considering the fact that the vector representing a 
derivation of the unit vector is perpendicular on it, 

one can conclude that the vector 
ds

d 0b  is 

perpendicular on b0 i.e. on the binormal. The vector 
product is perpendicular on both vectors in vector 

product i.e. on t0 and 
ds

d 0n , (see Eq. (17)). So, one 

can conclude that the vector 
ds

d 0b  is perpendicular 

on tangent as well. As the vector is perpendicular 
both on binormal b0 and on tangent t0, it coincides 
with the principal normal vector n0 of the curve in 
the considered point and one can write: 
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The double sign in Eq. (19) appears because the 
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direction with respect to the vector n0. According to 
the sign convention, the torsion is positive if the 
rotation of the binormal is to the right regarding the 
unit vector of the tangent t0 while moving along the 
curve. Using the Frenet equation which shows the 
connection between the changes of the principal 
directions of the space curve, curvature k(s) and 
torsion, the torsion  of the tendon in the 
considered cross-section can be expressed with 
scalar components of the vectors 
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 (20) 

 
4 Numerical examples 
 
The described modelling of the concrete and 
prestressing tendons is implemented in the 



306 M. Galić, P. Marović: Validation of the developed triaxial… 
______________________________________________________________________________________________________________________ 
 

computer programme PRECON3D [1] and [2]. The 
prestressed beams and/or girders used in everyday 
engineering structures generally have I, T, Π or 
similar cross-sections. Beams and/or girders with 
such cross-sections, due to an apparent three-
dimensional stress state, cannot be accurately 
analyzed with a two-dimensional model. 
The proposed three-dimensional numerical model, 
PRECON3D, is validated and compared with 
known experimental and/or analytical results on two 
examples: (i) four point bending of normal-strength 
and high-strength reinforced concrete beams with 
four different constant-zone lengths and two 
different reinforcement ratios taken from Ref. [11] 
on which, also, the mesh size effect have been 
analyzed; (ii) three point bending of reinforced 
concrete beam taken from [12]; (iii) prestressed 
concrete beam taken from [13]; (iv) prestressed Π-
beam taken from [14]. 
 
4.1 Four point bending of rc beams 
 
The example of four point bending of reinforced 
concrete beams have been performed according to 
the experimental testing by Weiss et al. [11] and 
mechanical two-dimensional model by Fantilli et al. 
[15] where 16 simply supported reinforced concrete 
beams were tested under four point bending. These 
16 beams were grouped in four groups of beams, 
having different concrete strength (high strength 
concrete HSC or normal strength concrete NSC), 
different percentage of reinforcement (high ratio 
HR or low ratio LR) and four different lengths (1d, 
2d, 3d and 4d). Each group contains four beams 
with the same cross-section but different constant-
moment zone length L (respectively 1, 2, 3 and 4 
times the effective depth d of the cross-section). 
The geometry of tested beams is shown in Fig. 9. 
The main material characteristics and the amount of 
steel reinforcement are summarised in Table 1 
according to Weiss et al. [11]. 

The tested beams are discretized with three-
dimensional 20-node finite elements describing 
concrete body with embedded one-dimensional 3-
node finite elements describing the reinforcement. 
Two finite element meshes were used: (i) mesh A: 
coarse mesh shown in Fig. 10; and (ii) mesh B: fine 
mesh obtained by dividing elements from mesh A 
on half over the height, i.e. mesh B has double 
number of elements describing concrete body.  
According to the performed numerical tests [16] 
with the developed computer programme 
PRECON3D [1], a correlation between ductility and 
constant-moment zone length L is shown for the 
beam of normal strength concrete (NSC) with low 
(LR) and high (HR) reinforcement ratio in Fig. 11 
and for the beam of high strength concrete (HSC) 
with low (LR) and high (HR) reinforcement ratio in 
Fig. 12.  
In Figures 11 and 12, the value of moment M in 
constant-moment zone length L is obtained as F·5d 
while ε represents the mean compressive top fibre 
strains in constant-moment zone length L. Fantilli et 
al. [15] stated that a strict correlation between the 
ductility and constant-moment zone length L is 
obtained by numerical results of his model. They 
also stated that only a little discrepancy is revealed 
for beams HSC-LR, made of high strength concrete 
and low reinforcement ratio (Fig. 12), for which the 
maximum bending moment and ductility are 
overestimated.  
The obtained numerical results (green and purple 
lines in Fig. 11 and 12) [1] and [16] show better 
correlation with experimental results (red lines) [11] 
for both meshes, coarse and fine one, than the one 
presented by Fantilli et al. (blue lines) [15]. The 
difference in numerical results obtained for these 
two meshes (mesh A: coarse; mesh B: fine) is 
practically negligible. 

 

        
 
Figure 9. The beam tested by Weiss et al. [11]: static conditions and geometrical characteristics. 
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Table 1. Material characteristics of the beam tested by Weiss et al. [11] (see Fig. 9) 
 

Beams fc  

(MPa) 

Ec  

(MPa) 

As 

(mm2) 

fy 

(MPa) 

fu 

(MPa) 

Es 

(MPa) 

L/d 

NSC-LR-1D 

NSC-LR-2D 

NSC-LR-3D 

NSC-LR-4D 

39.8 

46.6 

46.6 

39.8 

32 500 

32 000 

32 000 

32 500 

138.8 

138.8 

138.8 

138.8 

395 

395 

395 

395 

557 

557 

557 

557 

192 000 

192 000 

192 000 

192 000 

1 

2 

3 

4 

NSC-HR-1D 

NSC-HR-2D 

NSC-HR-3D 

NSC-HR-4D 

38.7 

38.7 

46.7 

46.7 

32 700 

31 500 

32 300 

32 300 

382.3 

382.3 

382.3 

382.3 

400 

400 

400 

400 

634 

634 

634 

634 

204 000 

204 000 

204 000 

204 000 

1 

2 

3 

4 

HSC-LR-1D 

HSC-LR-2D 

HSC-LR-3D 

HSC-LR-4D  

98.8 

100.6 

100.6 

98.8 

34 300 

36 300 

36 300 

34 300 

382.3 

382.3 

382.3 

382.3 

400 

400 

400 

400 

634 

634 

634 

634 

204 000 

204 000 

204 000 

204 000 

1 

2 

3 

4 

HSC-HR-1D 

HSC-HR-2D 

HSC-HR-3D 

HSC-HR-4D 

108.3 

97.9 

97.9 

108.3 

36 800 

35 400 

35 400 

36 800 

981.8 

981.8 

981.8 

981.8 

431 

431 

431 

431 

614 

614 

614 

614 

203 000 

203 000 

203 000 

203 000 

1 

2 

3 

4 

 

 
 
Figure 10. Numerical discretization of the beam, tested by Weiss et al. [11], for the programme 

PRECON3D [1]: coarse mesh. 
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Figure 11. Comparison between the numerical results of the proposed model PRECON3D [1], 

mechanical model [15] and those experimentally measured in Ref. [11] for NSC beams. 
 

 
 
Figure 12. Comparison between the numerical results of the proposed model PRECON3D [1], 

mechanical model [15] and those experimentally measured in Ref. [11] for HSC beams. 
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4.2 Three point bending of rc beam 
 
The example of three point bending of reinforced 
concrete beams have been performed according to 
the numerical testing by Rabczuk and Belytschko 
[12] and experimental testing by Bosco and 
Debernardi [17] where two simply supported 

reinforced concrete beams were tested under three 
point bending. The test setup and the dimensions of 
two tested beams marked T5A1 and T6A1 are 
shown in Fig. 13. As can be seen from Fig. 13, the 
beam T6A1 has a higher degree of reinforcement at 
the bottom than beam T5A1. 

 

 
 
Figure 13. The test setup and the dimensions of the beams T5A1 and T6A1 [12]. 
 
The material characteristics of the reinforced concrete 
beams are [12]: (i) concrete: the modulus of elasticity, 
Ec = 28 000 N/mm2; Poisson’s ratio,  = 0.22; the 
uniaxial compressive strength, 'c = 32.0 N/mm2; the 
uniaxial tensile strength, t = 2.5 N/mm2; fracture 
energy, Gf = 100 N/m; (ii) reinforcement: the uniaxial 
tensile strength, M = 672 N/mm2; uniaxial yield 
strength,   y = 587 N/mm2; the modulus of elasticity, 
Es = 200 000 N/mm2. 
The tested beams are discretized with three-
dimensional 20-node finite elements describing 
concrete body with embedded one-dimensional 3-
node finite elements describing the longitudinal 
reinforcement and stirrups. 
Due to the obtained results from previous example 
considering mesh dependence where that influence 
was almost negligible, only one mesh was used in 
this example. 
The load - mid displacement curves are shown in 
Fig. 14. The agreement between the experiments 
[17], computational results [12] and the one 
obtained by computer programme PRECON3D [1] 
is excellent. The difference of the reinforcement at 
the bottom of the beams T6A1 and T5A1 (812 
versus 412) causes different failure patterns. The 
beam T5A1 failed due to plastic flow of the lower 
reinforcement. The beam T6A1 failed due to the 
failure of the concrete compression zone in the 
middle upper part of the beam. For beam T6A1, a 
high damage compression zone caused a rapid 
decrease in the slope of the load – mid displacement 
curve (Fig. 14). 
 

 
 
Figure 14. The load – mid displacement curves of 

the beams T5A1 and T6A1. 
 
4.3 Prestressed concrete beam 
 
As an example of a three point bending of a 
prestressed concrete beam, a beam marked 16/31-
1865 numerically analyzed by Ayoub and Filippou 
[13] was chosen to perform bond-slip analysis (Fig. 
15). 
Ayoub and Filippou [13] analyzed two bond-slip 
situations: (i) full bond; and (ii) bond-slip described 
by special bond element that describes the transfer 
of stresses between the prestressing tendons and the 
concrete. A developed model incorporated into 
computer programme PRECON3D [1, 2] considers 
only a full bond. 
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Figure 15. The test setup and the dimensions of the beam 16/31-1865 [13]. 
 
The material characteristics of the prestressed 
concrete beam 16/31-1865 according to [13] are: (i) 
concrete: the modulus of elasticity, Ec = 35 000 N/mm2; 
Poisson’s ratio,  = 0.20; the uniaxial compressive 
strength, 'c = 31.0 N/mm2; the uniaxial tensile 
strength, t = 3.1 N/mm2; (ii) tendon: the modulus of 
elasticity, Es = 204 900 N/mm2; uniaxial yield strength, 
y = 1 639.3 N/mm2; the cross-section area of the 
prestressed tendon, Ap = 146.4 mm2; the initial 
prestressing force, Fp = 188.27 kN. 
The global response, i.e. the load – mid 
displacement curves of the beam 16/31-1865 are 
shown in Fig. 16. The agreement between the results 
obtained by computer programme PRECON3D [1] 
and the one obtained by Ayoub and Filippou [13] is 
excellent, especially considering negligible 
difference between results calculated for full-bond 
and bond-slip cases.  
 

 
 
Figure 16. Global response of beam 16/31-1865. 
 
As can be seen from Fig. 16, general behavior of 
prestressed beam 16/31-1865 is almost identical for 
all three analyses. Before the application of the load, 
the displacement caused only by prestressed force 
shows a negative value, referred to as camber. 

Yielding of the tendon starts at a load value of 32 kN. 
The beam then shows a ductile behavior up to the 
collapse. For the validation of the developed model, 
obtained results are compared with ones available 
from [13]: the calculated maximum tendon strain 
was 0.0178 versus 0.0187, which corresponds to a 
stress in the tendon of 1 705 MPa versus 1 716 MPa; 
flexural crushing occurs at a maximum moment of 
45.3 kNm versus 46.6 kNm, which corresponds to 
loading force (F) 49.95 kN versus 51.35 kN. 
 
4.4 Prestressed Π-beam 
 
The analyzed prestressed Π-beam is taken from 
[14]. The beam has been tested experimentally [14] 
and the results have been compared with the 
numerical ones obtained by computer programme 
PRECON3D [1]. The prestressed Π-beam geometry 
and loading are shown in Fig. 17. 
The material characteristics of the prestressed Π-
beam are [14]: the modulus of elasticity of the 
concrete, Ec = 36 000 N/mm2; Poisson’s ratio of the 
concrete,  = 0.25; the uniaxial compressive strength of 
the concrete, 'c = 53.1 N/mm2; the uniaxial tensile 
strength of the concrete, t = 7.4 N/mm2; the 
compressive strain of the concrete, εc = 0.0035; the 
tensile strain of the concrete, εt = 0.002; tensile 
correction coefficient, α = 0.6; the uniaxial tensile 
strength of the steel, y = 1 900 N/mm2; the modulus 
of elasticity of the steel, Es = 195 000 N/mm2; 
yielding strain of the steel, εy = 0.010; and the  
total cross-section area of the prestressed tendons, 
As = 614 mm2. 
The prestressed Π-beam concrete structure is 
discretized with two meshes: (i) coarse mesh: 104 
three-dimensional, 20-node finite elements 
describing concrete body and with 13 one-
dimensional, 3-node finite elements for each tendon 
(Fig. 18); (ii) fine mesh: 208 three-dimensional, 20-
node finite elements describing concrete body and 
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with 13 one-dimensional, 3-node finite elements for 
each tendon.  

The load-deflection diagrams of the mid-span point, 
under a concentrated force at the mid-span, up to the 
failure for both meshes are presented in Fig. 19. 

 

 
 

 

                                
 
Figure 17. The Π –beam static conditions, geometry and loading [14]. 
 

 
 

Figure 18. The prestressed Π-beam finite element discretization. 
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As can be seen from Fig. 19, the influence of mesh 
size is evident. Finer mesh gives better results: (i) 
before the application of the load, the displacement 
caused by prestressing shows a negative value 
almost identical as a camber in the experiment [14]; 
(ii) load – displacement curve obtained by finer 
mesh is closer to the experimental one than the one 
obtained by coarser mesh; (iii) yielding is better 
described by finer mesh (closer to the experimental 
results). 
 

 
 
Figure 19. The load-deflection diagram of the 

mid-span point. 
 
Furthermore, developed computer programme 
PRECON3D [1, 2], among other modelling 
possibilities, enables the calculation of stresses in 
concrete and steel in characteristic points, deformed 
shapes of a structure in all phases, and the losses of 
a prestressed force caused by elastic shrinkage of 
concrete. Some other analyzed examples of 
reinforced concrete and prestressed concrete 
structures, possibilities and comparisons can be 
found in [2], [3] and [16]. 
 
5 Conclusions 
 
This paper presents a three-dimensional non-linear 
material model for concrete based on the modified 
Mohr-Coulomb law for dominant compression 
stresses and the modified Rankine law for dominant 
tensile stresses. Non-linear triaxial behaviour of 
concrete includes all dominant influences. The 
model is defined by elementary material parameters, 

describing thus a very complex behaviour of 
reinforced and prestressed concrete structures as 
simply and effectively as possible.  
The obtained results show good agreement with the 
ones found in literature, both experimentally and 
numerically. Considering performed mesh 
sensitivity analyses, it can be stated that finer mesh 
versus coarse one gives generally better results, 
especially in the analysis of yielding zones of 
prestressed concrete structures. 
Analyses carried out by numerical programme 
PRECON3D can be used as a numerical test for 
loading the structures until collapse. The results 
obtained in this study show very good agreement 
with the experimental data and accuracy falls within 
an interval of 5-8% (the model is always on the side 
of safety). So, these numerical tests can be used for 
the computation of the bearing capacity of new and 
existing structures. In this way, the expensive 
experimental tests can be reduced. 
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