Optimal sequence of hole-making operations using particle swarm optimization and modified shuffled frog leaping algorithm
Keywords:
injection mould, hole-making operations, particle swarm optimization, shuffled frog leaping algorithmAbstract
Tool travel and tool switch scheduling are two major issues in hole-making operations. It is necessary to find the optimal sequence of operations to reduce the total processing cost of hole-making operations. In this work therefore, an attempt is made to use both a recently developed particle swarm optimisation algorithm and a shuffled frog leaping algorithm demonstrating in this way an example of plastic injection mould. The exact value of the minimum total processing cost is obtained by considering all possible combinations of sequences. The results obtained using particle swarm optimisation and shuffled frog leaping algorithm are compared with the minimum total processing cost results obtained by considering all possible combinations of sequences. It is observed that the results obtained using particle swarm optimisation and shuffled frog leaping algorithm are closer to the results of the minimum total processing cost obtained by considering all possible combinations of sequences presented in this work. This clearly shows that particle swarm optimisation and shuffled frog leaping algorithm can be effectively used in optimisation of large scale injection mould hole-making operations.Downloads
Published
Issue
Section
License
Engineering review uses the Creative Commons Attribution-NonCommercial-NoDerivatives (CC-BY-NC-ND) 4.0 International License, which governs the use, publishing and distribution of articles by authors, publishers and the wider general public.
The authors are allowed to post a digital file of the published article, or the link to the published article (Enginering Review web page) may be made publicly available on websites or repositories, such as the Author’s personal website, preprint servers, university networks or primary employer’s institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the published article, under the condition that the article is posted in its unaltered Engineering Review form, exclusively for non-commercial purposes.
The journal Engineering Review’s publishing procedure is performed in accordance with the publishing ethics statements, defined within the Publishing Ethics Resource Kit. The Ethics statement is available in the document Ethics Policies.