A novel sectional constitutive model for beam-column element
Keywords:
constitutive model, yield surface, axial force and bending moment coupling, mixed hardening, elastoplastic analysisAbstract
The constitutive models on sectional level can meet both computational accuracy and efficiency, and hence have great potential for nonlinear analyses of frame structures. However, currently available sectional constitutive models usually assume a constant axial force and therefore cannot account for axial force and bending moment coupling flexibly. In this paper, a sectional constitutive model is proposed in the framework of classical plastic theory. The proposed model features kinematic/isotropic hardening. It can well account for axial flexure interaction, and can be used to describe distributed plasticity along beam-column members in comparison with a plastic hinge model. The numerical simulations of a cantilever column and a steel frame structure showed that the proposed sectional constitutive model is more accurate than a plastic hinge model and more efficient than a fiber model.Downloads
Published
2016-01-27
Issue
Section
Articles
License
Copyright 2022 by Faculty of Engineering University of Rijeka, Faculty of Civil Engineering University of Rijeka. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media without the written consent of the publisher.
The journal Engineering Review’s publishing procedure is performed in accordance with the publishing ethics statements, defined within the Publishing Ethics Resource Kit. The Ethics statement is available in the document Ethics Policies.