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  In static environments, and regarding the 

landmarks also as obstacles in the given situation, 

this paper suggests a map building algorithm of 

simultaneous localization and path planning based 

on the potential field. The robot can locate its 

movement control discipline with the help of a 

potential field theory and by conducting 

simultaneous localization and mapping; besides, 

the following prediction and state estimation will 

be done based on predicted control law. With the 

method of path planning in the potential field, the 

minimum influential range of space obstacles with 

repulsive potential can be adjusted, which is in 

adaptation to the landmarks and environments in 

which the landmarks are simultaneously regarded 

as obstacles. The experiments show that the 

suggested algorithm, through which the robot can 

conduct simultaneous localization and mapping in 

the localized landmarks, is also at the same time 

used as an obstacle in environments. After 

analyzing relevant performance indicators, the 

suggested algorithm has been verified as consistent 

estimation. 
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1 Introduction 
 

The robot simultaneous localization and mapping 

(SLAM) is the prerequisite and basis for navigation. 

The robot navigation means it can independently 

choose the best path to reach the target location 

without collision with the obstacles. The robot 

navigation needs to handle three issues: 

environmental modeling and robot localization, 

handling the obtained information and locating the 

optimal path with collision avoidance. The related 

issues to the robot SLAM have been extensively 

studied [1-9], which include state-space 

presentation of the system, computational 

complexity, data association, environmental 

presentation and consistency estimation, and so on. 

Bailey [4] has discussed and analyzed the 

consistency estimation affecting EKF-SLAM 

algorithm. Also, Bailey [5] has analyzed the 

consistency estimation of Fast-SLAM algorithm. 

Bosse and Pinies [6, 8] have studied large-scale 

SLAM. In [7], the compressed EKF estimator 

produces an estimate that is identical to the EKF 

estimate but its computational cost can be 

remarkably lower. So, the CEKFSLAM algorithm 
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has solved the problem of constantly expanding 

state. In [10], the large global covariance is avoided 

by performing high-frequency operations in a local 

coordinate frame so as to be more numerically 

stable and less affected by linearization errors. In 

[11], the measurement uncertainty is solved. 

However, all of these studies haven’t considered the 

robot path planning issue.  

The SLAM issue considers path planning belongs to 

the detection planning SLAM issue [12-15, 19]. In 

[12], the robot motion planning and SLAM issues 

are constituted into one joint function. Based on this 

function, the robot plans an optimal path between 

its current location and a selected local destination 

in order to implement the whole navigation process 

in an active and intelligent way. In [15], a novel 

motion planning approach is proposed for SLAM in 

out-door. This approach uses the frontier based 

exploration strategy to find frontier points, and to 

select the best one as the destination point of the 

robot. In [9], the robot performs navigation 

according to the map described as a combination of 

the topological corridor and metric room maps. This 

method has combined path planning and the SLAM 

issue, yet it is only applicable in the surroundings 

like office. In [11], measurements from a stereo 

vision camera system and a 2D laser range finder 

are fused to dynamically plan and navigate a mobile 

robot. This is a method for avoiding obstacles only 

but not an optimal path planning method.  

To deal with SLAM issue in the obstacle 

environments, this paper suggests a SLAM 

algorithm with path planning based on the potential 

field. When robot simultaneously conducts 

localization and mapping, the motion control law is 

determined on the principle of potential field. 

According to the derivative control law, the next 

step prediction and state estimation is performed. In 

path planning methods based on the potential field, 

the minimum distance of influence of the repulsive 

potentials identified as obstacles can be adjusted so 

as to be adaptable to environments with objects 

characterized by both landmarks and obstacle. This 

realizes the robot navigation independently in 

obstacle environments and simultaneous 

localization and mapping, which improves 

adaptability and autonomy of robots.  

 

 

 

 

2 System description 
 

The described SLAM system state is formed by the 

robot’s pose and the observed coordinates of the 

landmarks in the static environments. The joint state 

vector at the k th moment is shown as:  
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In (1), vkvkvk ,φ,yx stand for the position and heading 

of the robot in two-dimensional space, respectively. 

The map is static. Notice that the map parameters 

 1 1n , , , ,N Nx y x y
T

 do not have a time subscript as 

they are modeled as stationary. The robot’s 

movement model is rolling motion constraints (i.e., 

assuming zero wheel slip) [16]. 
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In (2), the time interval between 1k   and k  is T , 

the velocity kv and steering angle kG are constants 

and they consist of the controlled vector 

 u ,k k kv G
T

. The wheelbase between the front and 

rear axles is B . 

The observation model is given by [16] 

 

2 2( ) ( )
z (x )

arctan i vk

i vk

i vk i vk

ik i k y y

rkx x

x x y y
h






   
  
 
 

       (3) 

 

3 Slam algorithm with path planning based 

on potential field 

 
The algorithm combines path planning and 

simultaneous localization and mapping. The robot 

SLAM is a process of recursive iteration including 

prediction, observation, data association, update, 

and state augmentation. The law of robot motion 

control is determined by path planning based on the 

principle of potential fields. According to derivative 

control law, next step prediction and state 

estimation is performed. Iterative recursive 
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estimation is conducted based on the above process. 

The algorithm diagram is shown in Figure1.  

 

3.1 Path Planning based on Potential Field 

 

When considering environmental landmarks as 

obstacle and when it has a certain size, the potential 

function derived from the observed distance can be 

applied into robot path planning because the 

potential field is the distance function between 

objects. The basic idea of path planning based on 

potential field is as follows. The robot is attracted 

by waypoint and the observed landmarks as 

obstacles are excluded at the same time. Robot path 

planning is shown in Figure 2. In Figure 2, based on 

a single landmark, the suggested method can 

develop many landmarks in environments. The 

robot’s movement direction is driven by the 

waypoint. The robot’s speed is direction rv , the 

steering angle is r , the relative position from robot 

to landmarks is rlp , the angle is rl , the relative 

position from robot to waypoint is rwp , its angle 

is rw . 
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Figure 1: Algorithm Diagram. 
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Figure 2: Path Planning. 

 

Here, [ ]rw rw rwp x y T
, [ ]rl rl rlp x y T

. The 

Euclidean distance from robot to landmark is rlp , 

the Euclidean distance from robot to waypoint 

is rwp .  The defined attractive potential is attU  and 

the repulsive potential is repU [15]. 
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att repU U U                             (6) 

 

In the above formula, 0  stands for the tolerant 

minimum distance between the robot and obstacle 

landmarks, 1 is the scaling factors for attractive 

potentials, and 1 0  , 2 is the scaling factors for 

repulsive potentials and 2 0  . If more landmarks as 

obstacles in the environments, the joint potentials is  
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When the Euclidean distance from robot to obstacle 

is 0rlp  , robot path planning should make rwp  

pointing to U negative gradient direction by the 

steepest descent control [16], when  
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Formula (9) can be drawn from the joint formula (7) 

and (8). 
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In the above formula, cosrw rw rwx p  , 
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Here, 

irw rl  ,
1
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When 1r rwv p , also 0U   and 0U  .  Thus, 

when 0irlp  , in path planning based on potential 

field, the speed is  

 

1r rwv p  .                                (11) 

 

The steering angle is shown in the formula (10). 

 

3.2 SLAM Algorithm with Path Planning based 

on Potential Field  

 

Six steps in each recursive process will be 

performed for robot SLAM. These procedures are 

followed by determining the robot’s control law, 

state prediction, environments observation, data 

association, update and map building.  

 

Step 1: Determine the robot’s control law 

Path planning means mainly planning the robot’s 

speed and steering angle. The method of planning 

the robot’s speed and steering angle follows Section 

3.1 above. As there is no relative to 0  in planning 

speed formula (11), this paper considers only 

planning the steering angle. The parameters 0  and  

2  in planning the steering angle formula (10) are 

applicable to adjusting the robot’s path planning. As 

a result, this path planning is classified into two 

situations:  

If all the observed landmarks follow 0irl p , then 

robot steering angle planning is r rw  ,and also 

follow  

 

 1 1 maxrw rk kG G      . (12) 

 

If all the observed landmarks follow 0irlp  , then 

robot steering angle planning is r , and also it 

follows:  

 

 1 1 maxr rk kG G      . (13) 

 

Here, r is calculated from the formula (10). When 

calculating the formula (10), 
irlp  and rwp  are 

calculated from the updated landmarks and the 

robot’s position at 1k   moment.  

 

Step 2: State prediction  

State prediction is fulfilled through the process 

model in the formula (2). 
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Step 3: Environments observation 

Environments observation needs to accomplish the 

detection of environments characteristics 

information. The robot position information is 

calculated through the observation model in the 

formula (3). 

  

Step 4: Data Association 

In the algorithm, the acquired map is a two-

dimensional planar map. The Nearest Neighbor 

method is adopted in data association by Singer et 

al [17]. The observation z is decomposed into 

association zk and observation znk of new landmarks. 
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Step 5: Update  

State vector and covariance matrix are updated as 

follows: 
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Step 6: Map building 

The map is built as follows: 
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For the proposed algorithm, the estimation issue of 

consistency should be considered. For linear 

Gaussian filter, the filter performance can be 

characterized through NEES (normalized estimation 

error squared) [18]. 
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Under the hypothesis that the filter is consistent and 

approximately linear-Gaussian, NEES obeys 

 2
distribution. Consistency of the algorithm is 

evaluated by performing N times Monte Carlo runs. 

The algorithm performance indicators are evaluated 

by the average NEES. When N  , k
  approaches 

the state vector dimension. 

 

 

1

1

N

k ikN
i

 


 
 (19) 

 

Given the hypothesis of a consistent linear-Gaussian 

filter, k
N  has a 

2
 density with N dim ( x k ). Thus, 

for the 3-dimensional robot pose, with N=50, the 

95% probability concentration region for k
 is 

bounded by the interval [2.36, 3.72]. If k
  rises 

significantly higher than the upper bound, the filter 

is optimistic and if it tends below the lower bound, 

the filter is conservative. 

 

4 Experimental results and discussion   
 

The experiment environment is an   area, where 

some landmarks are distributed randomly, and 

seven waypoints are used to lead the robot’s 

direction, as shown in Figure 3. The two landmarks 

possess a certain feature of the shape and size and 

one landmark of radius is1.3m , the other landmark 

of radius is 1.6m , others are regarded as points 

without shape and size. In Figure3, “*” denotes 

landmarks, “  ” denotes robot, “  ” denotes 

landmarks with shape and size, “  ” denotes 

waypoint, “+” denotes estimated position of the 

landmarks, “ †” denotes landmark’s covariance, “-” 

denotes estimated position of the robot. In Figure3, 

(a) is the simulation diagram adopting classical 

EKF-SLAM algorithm, (b) is the simulation 

diagram adopting classical Fast-SLAM algorithm.  

From Figure 3(a), as the robot simultaneous 

localization and mapping in the environments, the 

robot’s path crosses with two landmarks possessing 

a shape. This is because the robot still follows the 

preinstalled waypoint to control its direction angle 

when it has observed two landmarks with shape and 

size, which shows that the robot has collided with 

such landmarks. In Figure 3(b), Fast-SLAM 

algorithm is adopted, the estimated landmark’s 

covariance is reduced, but the robot’s path crosses 

with two landmarks with shape and size, which 

shows that the robot has collided with such 

landmarks. These algorithms haven’t considered the 

case of treating the landmarks as the obstacle at the 

same time, thus the robot cannot have self-

positioning and mapping.  

 In order to verify the validity of the algorithm, the 

suggested algorithm is adopted to conduct SLAM 

simulation, and the consistency estimation of the 

algorithm is analyzed.  

 

4.1 SLAM simulation with path planning based 

on potential field  

 

Figure 4 is the SLAM simulation diagram of robot 

path planning when the potential parameter varies. 

Simulation is conducted under three conditions: 

condition one: 
0 3  ,

2 2  , condition two: 

0 3  ,
2 12  ,condition three: 

0 12  ,
2 2  .  

Figure 5 is the distance curve when the robot is 

distant from the circular landmarks with radius of 

1.3m  when the parameters vary. The diagram shows 

the distance curve under three kinds of parameters, 

respectively.  

As Figure 5 shows, three curves are all above1.3m , 

which shows that the distance between the robot 

and the 1.3m -radius circular landmarks is always 

longer than1.3m , and consequently, this means no 

collision will occur. Under the two conditions when 

0 3  ,
2 12   and 

0 12  ,
2 2  , the curve is 

obviously higher than the one when 
0 3  ,

2 2   

after 1000 steps. Figure 5 shows that, the more 

distant the factor of the potential field
0 is, the 

sooner the robot gets as far away from obstacle 

landmarks; the bigger the repulsive factor 
2  is, the 

more obvious the repulsive potential  and therefore 

the more obvious the distance between the robot 

and the obstacle landmarks. This shows when the 

robot has observed some landmarks with shape and 

size and when the robot can adjust potential field 

distance factor 
0  or 

2  according to different 

shape and size; additionally, the robot can avoid 

colliding with such landmarks by using potential 

field theory to calculate the robot’s control law. 

Figure 6 is the curve of the robot steering angle 

when parameters vary. The diagram shows the robot 

steering angle curve under three kinds of parameters 

respectively.  
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In Figure 6, the three curves are basically 

overlapped before passing 784 steps, and the curves 

are rather smooth, which shows the robot hasn’t 

observed obstacle landmarks on its path. The 

change of parameters has no influence on the 

robot’s steering angle. While at 784th step, the three 

curves all show huge mutation, showing the robot 

has observed the obstacle landmarks, so the robot 

will be controlled to divert far from this kind of 

landmarks according to path planning based on the 

potential field. Under these two conditions of 

0 3  ,
2 12   and 

0 12  , 
2 2  , the robot’s 

steering angle undergoes two huge mutations after 

passing 800 steps, showing the robot can adjust the 

potential field distance factor 
0  or repulsive factor 

2   and adjust the robot’s control law to avoid 

colliding with such landmarks. 

 

4.2 Consistency estimation of the robot poses  

 

 
  

(a) EKF-SLAM algorithm simulation 

 
  

(b) Fast-SLAM algorithm simulation 

 

Figure 3: The robot path with classic SLAM 

                algorithm when encountering shaped 

                obstacles. 

 
 

Figure 4: The robot SLAM with path planning 

based on potential field when parameters vary. 

 

 
 

Figure 5: Influence of parameters on distance. 

 

 
 

Figure 6: Influence of parameters on the steering 

angle. 

 

When 
0 3  ,

2 2  , the suggested algorithm is 

adopted to run Monte Carlo simulation 50 times,and 

the average NEES of its pose is shown in Figure 7. 

From Figure 7, the average NEES of the robot pose 

all obey  2  distribution, and the curve is basically 

within [2.36, 3.72].  Thus it can treat the algorithm 

as consistency estimation. 
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5 Conclusion  
 

To deal with landmark characterized by both 

landmark and obstacle in unknown environments, a 

Simultaneous Localization and Mapping algorithm 

based on path planning is presented. When the robot 

motion control law is planned for the next step 

based on the potential field theory, the robot can 

perform simultaneous localization and mapping, 

adjust the relevant measurement factors according 

to the observed landmarks with shape and size, 

determine the robot’s control law and avoid 

obstacles wisely and conduct path planning. The 

consistency estimation of the suggested algorithm is 

verified by Average NEES. The algorithm is 

applicable in static environments, while further 

studies are needed in dynamic environments. 

 

 
Figure 7: Average NEES of robot’s pose. 

 

In dynamic environments, static landmark and 

dynamic random target exist simultaneously. For 

such cases, SLAM problem needs to consider the 

following issues: 

(1) In order to build the random target into the map, 

the trajectory of random targets is to be predicted. 

(2)The collisions problem between the robot and 

random target are considered. 

(3) The map is built involving static landmark and 

dynamic random target. 
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