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 In this paper, dynamic deformation simulation of 

an elastic helical rod with circular cross-section 

under axial tension is discussed on the basis of the 

Kirchhoff dynamic analogy. Firstly, equilibrium 

equations of an elastic rod described by Euler 

angles are established in the Frenet coordinates of 

the centerline. To get solutions of the equations, 

through a cylindrical coordinate system founded 

by end constraint, mathematical analytical 

formulations were used to describe elastic rod 

configuration are gained on the basis of Saint-

Venant Principle of Elasticity, in the form of 

Elliptic functions. Then, based on the conclusions 

of static analysis, the relationship between 

geometric parameters and end constraint of helical 

rods is qualitatively analyzed. Finally, nonlinear 

dynamic deformation simulation with constraint 

force change is realized in a virtual environment to 

verify the effectiveness of the above algorithm. 

Keywords:  

Helical rod 

Kirchhoff dynamic analogy 

Cylindrical coordinates 

Deformation simulation 

 

 

1 Introduction 
 

With the maturity of virtual simulation technology 

for rigid objects, simulation of one-dimension 

flexible objects like elastic curved rods is gradually 

favored by researchers [1]. Helical state is a prevalent 

equilibrium form of elastic rods in the nature, such as 

coiling cables, curly fibers, and stems of climbing 

plants, spiral bacillus, DNA and spring. Helical rods 

are equilibrium solutions that have great application 

backgrounds to DNA molecular biology, textile 

industry, cable design and pipeline laying procedure. 

In all the research into elastic rod equilibrium, 

dynamic analogy is widely applied as an analysis 

method [2]. Based on Newton’s law, the Kirchhoff 

rod model provides a theoretical frame describing the 

static and dynamic behaviors of elastic rods and/since 

Kirchhoff rods can undergo large changes of shape 

[3]. The nature of the Kirchhoff model is a set of 

ordinary differential equations, so the configuration 

of elastic rod is decided by solutions of the equations 
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under special boundary or initial conditions. The 

problem solving method mainly uses numerical and 

symbolic methods. 

On one hand, the idea of a numerical method is to 

convert the Kirchhoff equations into nonlinear 

equations which could be solved with numerical 

iteration. However, since the Jacobian matrix of 

mechanical equations has the characteristics of large-

scale and large stiffness, algorithm requirement is 

very high in order to get better convergence. Pai [4] 

presented a two-phase integration method to model 

the behaviors of the strand of surgical suture. The full 

static Kirchhoff equations including distributed 

external loading and initial curvatures of rods are 

considered. Sunil [5] used a body chain to calculate 

the centerline curvature of elastic rods to do hair 

modeling, animation and rendering. Tao [6] proposed 

a general elastic rod model using volumetric elastic 

joints to discrete the Kirchhoff model and thus a long 

flexible object could be represented by linking elastic 

joints between rigid edge elements. Liu et al. [7] used 

quaternion as simulation DOFs to model the material 
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twist required for a small simulation time step to 

solve coupling constraints between the bending 

moment and the material twisting. On the other hand, 

the symbolic method is mainly used for elastic rods 

with circular cross-section, which means that the 

equations for circular cross-section rods have an 

analytical solution. So far, the method has obtained 

some research results. Nizette [8] gave the parametric 

analytical solution with the form of the Euler angles 

of the Kirchhoff equations, and made a classification 

for the shapes of the Kirchhoff filaments based on the 

geometry of the spinning top solutions. Liu Shu and 

Andreas Weber [9] presented a symbol-numerical 

integration method for hair simulation which could 

be used in different boundary conditions; a unified 

method was developed to match the parameters and 

integration constants needed by the explicit solutions 

and given boundary conditions. 

In this paper the focus is on the configuration of 

circular cross-section elastic rod under known end 

constraint. In [9], the explicit solutions with Euler 

angles under boundary conditions are given, but the 

calculation of integral constants and the convertion 

from arc coordinates to basic coordinates are very 

difficult, which are actually not described in details. 

To solve this problem, in this paper, a cylindrical 

coordinate system is introduced decided by the given 

end constrain force and moment on the basis of Saint-

Venant Principle, and consequently, cylindrical 

coordinates reflecting the configuration of elastic 

rods are clearly expressed. Moreover, mathematical 

formulations are given for helical rod configuration, 

which describe the relationship between geometry 

configuration and the end force and moment. Finally, 

a dynamic deformation process under changing 

external forces is verified in a developed virtual 

platform. 

 

2 Analytical integration of Kirchhoff 

equations  
 

According to [8]，the centerline of an elastic rod is 

expressed by the radius vector r(s), and spatial 

configuration of the elastic rod is described by a 

rotation of any point’s (P) Frenet coordinates P-NBT 

in the centerline relatively to a basic coordinate 

system O-ξηζ. Introducing Euler angles (ϕ, θ, φ), the 

static Kirchhoff equations on the basis of arc 

coordinates could be described in equations (1): 
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where A is bending stiffness of rods, C is the torsional 

stiffness, which are all decided by material constants, 

s is the arc coordinates, and F is end force. 

For an end constraint elastic rod, the direction of F is 

as the ζ axis, and a cylindrical coordinate system O-

XYZ is established on the basis of Saint-Venant 

Principle, and the radius vector r is defined as r=(F

×M)/F2, which are all shown in Fig. 1, where M is 

the end moment. 
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Figure 1. Coordinate systems of an elastic rod 

 

Therefore, cylindrical coordinates (ρ, Ψ, ζ) reflecting 

configuration of elastic rods shown in equations (2) 

is expressed, which could be verified that equations 

(2) are truly the solution to the equations (1) derived 

by software Mathematica [10]: 
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where a, p, h, m and l are all integral constants, which 

are decided/defined by the end force and moment; 

JacobiSN is a first class Elliptic function and γ i 

(i=1,2,3) are the three roots of the following equation: 

    
221f a p m l   

 

     




( )
cos

.                 (3) 

 

3 Centerline of a helical rod 
 

From the perspective of virtual simulation, the 

torsion of helical rods with a circular cross-section 

could be neglected and the configuration of helical 

rods is completely determined by the helix. 

Geometrically, a helix is decided/defined by the 

radius R, the helix angle α and the laps N. A helix is 

shown in Fig. 2. The above basic, Frenet and 

cylindrical coordinate systems are established in Fig. 

2. And another two coordinate systems P-x1y1z1 and 

P-x2y2z2 are used to describe Euler angles. 
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Figure 2. Helical rod 
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For a helix, the polar radius ρ and the nutation angle 

θ should be constants. Therefore, the rotation angle 

between P-x1y1z1 and O-XYZ is π, directions of axis 

x1 and X are the same. After a rotation angle along θ 

the axis, P-x1y1z1 becomes P-x2y2z2 and coincides 

with the Frenet coordinates. 

Because of dρ/ds=0, after considering the 

relationship between the cylindrical coordinates and 

the Cartesian coordinates, the following equations (4) 

could be gained/derived: 
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Equations (2) and (4) considered simultaneously, t 

could be derived reflecting the relationship geometry 

configuration and the end force and moment as 

follows: 
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where ψ0 and ζ0 are cylindrical coordinates at the 

beginning of the helix. 

From equations (5), it is known that if we wanted 

to do simulation of deformation of helical rods, we 

should know how to compute the four integral 

constants decided/determined by the external fore 

and moment. However, we could only get two 

nonlinear equations from the equations (5), which is 

obviously not enough to solve four variables. So, we 

should give more conditions. 

Fortunately, for helical rods, f (γ) and f'(γ) should 

be zero if we want the variable θ be a constant. In 

summary, four equations for the four variables a, l, m, 

p are derived; and the conclusion is that as long as the 

external force and moment are given, the geometry 

configurations of helical rods are uniquely 

determined. 

 

4 Simulation results 

 

To verify correctness of the configuration equations 

of helical rods, a simulation platform is established 

on the basis of virtual software named Virtools [11] 

in C++ environments, and the program flow chart is 

shown in Fig. 3. 

 

give end force 

and moment

integral constants 

computation with the 

steepest descent method

helical rod 

centerline draw

cylindrical 

envelope

output 

configuration
 

Figure 3. Flow chart of simulation program 

 

Firstly, the cable material constants and end 

constraints are given, which are shown in Table 1. 

 

Table.1 Deformable simulation parameters 

 

Parameter name Value 

End external force, N 47.5 

End external torque, N. m2 9.5×10-3 

Young’s module, N/m2 3.89×109 

Passion ratio 0.25 

Diameter, cm 0.5 

Length, mm 40 

Initial helical angle Arccos0.2 
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The whole dynamic deformation process of a 

helical rod is described as follows. First, geometry 

parameters of initial configuration of the helical rod 

are given. Then, with the external force change, the 

program real-time computes the four integral 

constants with the steepest descent method so as to 

get the formulation of centerline of the helical rod.  

Finally, functions applied by Virtools are used to 

draw the centerline and to do cylindrical envelope, 

gaining the real-time configuration of the helical rod. 

The results are shown in Fig. 4. It can be seen that the 

helical radius becomes smaller while the helical 

angle becomes larger with an increase in external 

force, and the limiting case is a straight rod. 

 

 

Figure 4. Helical rod deformable process 

 

 

5 Conclusion  
 

In this paper, Euler angles are used to describe static 

force equilibrium equations. Mathematical 

formulations with the form of Elliptic functions 

expressing two-end constraint elastic rod 

configuration are developed in a cylindrical 

coordinate system, which is established on the basis 

of Saint-Venant Principle of static equivalent forces. 

For helical rods, configuration expressions are gained 

by qualitatively analyzing the relationship between 

geometric parameters and end constraint. A 

simulation platform is developed in a virtual 

environment to verify the deformation process under 

changing external force. 
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