
Engineering Review, Vol. 33, Issue 3, 165-172, 2013. 165
__

INCREMENTAL AND STABLE TRAINING ALGORITHM FOR

WIND TURBINE NEURAL MODELING

S. Abid1* – M. Chtourou1 – M. Djemel1

1Control & Energy Management Lab (CEM LAB) National School of Engineering of Sfax, University of Sfax, B.P.

1173, 3038 Sfax, Tunisia.

ARTICLE INFO Abstract:

Article history:

Received: 26.11.2012.

Received in revised form: 25.02.2013.

Accepted: 25.02.2013.

 Training and topology design of artificial neural

networks are important issues with large

application. This paper deals with an improved

algorithm for feed forward neural networks (FNN)s

training. The association of an incremental

approach and the Lyapunov stability theory

accomplishes both good generalization and stable

training process. The algorithm is tested on wind

turbine modeling. Compared to the incremental

approach and to the Lyapunov stability based

method, the association of both strategies gives

interesting results.

Keywords:

Wind turbine

Neural models

Incremental algorithm

Adaptive learning rate

1 Introduction

Wind energy is currently experiencing an unrecorded

growth as the cost price of this energy form has

become competitive and considerable technological

progress has been achieved in the field of wind

turbine. More intelligence is being introduced in

modeling and control of these systems [1], [2], [3]

and [4]. The objective is to optimize the power

efficiency of these systems and to improve quality

during operating conditions.

Variable-speed wind turbines exhibit a number of

significant advantages with respect to fixed-speed

turbines. Fixed-speed operation means that the

maximum performance coefficient has been reached

only for a specific wind speed, while the performance

has been significantly degraded for all other wind

speed regimes. Variable-speed wind turbines have

the ability to adapt operation conditions to different

wind speed regimes, thus improving overall

performance. This provides higher energy yields with

fewer grid connection power peaks. Nonetheless,

these benefits generally come at the cost of more

sophisticated control systems and power electronics

on the generator part.

Modeling and the simulation of wind turbines aim at

analyzing and optimizing the power extraction rate

* Corresponding author. Tel.: +216 21 472 391

E-mail address: abid_slim_enis@yahoo.fr

[5], [8] and [9]. These tasks are complex since they

include descriptions of aerodynamic interaction,

elastic mechanical coupling, electrical and pith

actuator subsystems.

The aerodynamic forces acting on wind turbines are

turbulent in nature. Moreover, wind speed is known

to vary stochastically [7]. As a result, it is impossible

to predict the captured aerodynamic torque from

single point wind speed measurements. Therefore,

one is lead to elaborate more adequate control

procedures such as neural networks controllers for

wind turbines which enable to deal with the presence

of uncertainties [6].This step can be accomplished as

well as the model describes the system dynamics

correctly, which shows the importance of the choice

of modeling strategy.

In this work, modeling of the turbine is provided via

a neural model whose architecture is selected based

on an approach arising from the association of two

strategies for synthesis of neural networks. This

approach leads to a new incremental learning

algorithm based on Lyapunov stability theory.

The rest of this paper is organized as follows. In

section 2 the modeling of an aerodynamic action on

wind turbines is described. In section 3 the neural

method for the speed modeling of wind turbines is

represented. Section 4 illustrates the obtained

166 S. Abid, M. Chtourou, M. Djemel: Incremental and stable training algorithm for wind turbine…
__

simulation results. Finally, the conclusion is

presented in section 5.

2 Modeling aerodynamic action on wind

turbines

The rigid model with only one degree of freedom [26-

28] is described by the following equation:

.kTTJ atgaat (1)

For this model g=nga is satisfied, where: aa

is the rotor rotational speed and gg is the

rotational speed of the high speed shaft, while ng

designates the gear ratio between the primary shaft

and the secondary shaft, a and g are the azimuthally

rotor position and the azimuthally position of the high

speed shaft.

The captured aerodynamic torque Ta is given [10] in

terms of the power coefficient Cp(,) as:

 ,,C
k

v
R

2

1
kT p

a

3
2

a

 (2)

where is the specific speed defined as:

,
v

R a (3)

v is the effective wind speed, is the air density, and

R designates the blades rotor radius.

The power coefficient Cp(,) is estimated using

aerodynamic data obtained from wind tunnel

measurements. It is generally represented under the

form of an analytical formula which gives Cp() for

various values of the pitch angle .

In the literature [11] one finds the following

approximation:

],exp[, BACp (4)

with:

2

1
,

3
3

2
6541

c

c
GandGcBcBcGcA

coefficients ci, i=1... 6 are identified from real Cp

curves.

The point (.) designates the first order time

derivative, Tg is the generator torque and Jr, Jg, kr, kg

are the moment of inertia of rotor side masses, the

moment of inertia of generator side masses, the

mechanical damping in the rotor side and the

mechanical damping in the generator side

respectively, where:

ggrt JnJJ 2

is the total inertia of generator side

masses,

ggrt knkk 2

is the equivalent mechanical

damping.

Using the Euler approximation, the discrete model

describing the wind turbine can be expressed as

follows:

 k

J

k

J

kT

J

kT
tk1k a

t

t

t

g

t

a
aa

(5)

t denotes the sampling period.

3 Neural modeling and synthesis

3.1 Introduction

Neural networks are extraordinary computing and

information processing methods can be used to

handle the complicated tasks such as pattern

recognition, function approximation, time series

forecasting and identification of complex systems

[12] and [13].

There are various types and architectures of neural

networks depending fundamentally on the way they

learn. In this work, the multi-layer perceptron

approach is used.

Many researchers have studied the problem of

learning neural networks and several algorithms have

been developed. Faster convergence and function

approximation accuracy are two key issues in

selecting a training algorithm.

The popular method for training multilayered (FNNs)

is the back propagation (BP) algorithm [14] and [15].

The use of this algorithm is not always successful due

to its sensitivity to learning parameters, initial state

and perturbation [16]. There has been much work on

the convergence of (BP) algorithm by using the

gradient method [17] and [18]. Also, different

versions of (BP) learning algorithms have been

proposed, such as on-line algorithm for dealing with

time varying inputs [19] and the Levenberg-

Marquardt-algorithm [20].

Modeling using neural networks requires the phase of

model selection, which is a crucial stage in the design

of a neural network. This phase must lead to choose

a model that is complex enough to be adjusted with

the data but not too excessive.

In this paper, we will develop an improved

constructive training algorithm for feedforward

neural network using Lyapunov stability theory. It

employs an incremental training procedure where

training patterns are learned one by one. The

Engineering Review, Vol. 33, Issue 3, 165-172, 2013. 167
__

Lyapunov stability theory has been introduced to

adjust the learning rate, assuring the stability of

training process.

3.2 Training algorithm based on Lyapunov

stability theory

Learning based on (BP) algorithm can lead to

unsatisfactory results. In addition, this algorithm has

unavoidable disadvantages such as its slow

convergence and its inability to establish a global

convergence. To overcome this problem, the

Lyapunov stability theory has been used to provide

an adaptive learning rate for improving the

convergence speed.

A simple (FNN)s with a single output is represented

in Fig. 1.

Figure 1. Feedforward Neural Network.

This neural network is parameterized in terms of its

weights, where:

 mT
mwwww ,...,, 21 (6)

The training data consists of N patterns {xi, yi},

i=1,2,…,N.

In order to derive a weights update law, a Lyapunov

function candidate has been defined as:

 ,rr
2

1
V T (7)

where r denotes the difference between the real

output and the desired output, as:

 TNN
d

ii
d

11
d yy,...,yy,...,yyr (8)

 The stability conditions 0V

give the weights

update law with an adaptive learning rate which can

be expressed as:

 ,rJ

rJ

r
kw1kw i

T
i2

i
T
i

2
i

 (9)

where:

 ri designates the error signal for sample i, as :

 ii
di yyr (10)

 Ji is the instantaneous value of the Jacobian,

as:

 m1
i

i
w

y
J

 (11)

 , are a constant and a very small constant

to avoid numerical instability when error

signal goes to zero respectively, which are

selected heuristically.

More details about this algorithm noted LF1 can be

found in Laxmidhar et al. [25].

In the following section, we present some

improvements on the above algorithm to deal with an

incremental structure of the (FNN)s.

3.3 Improved incremental algorithm based on

Lyapunov stability theory

Liu et al. [21] elaborated a constructive training

algorithm for determining the network size. In his

approach, the training begins with a single training

pattern and a single hidden layer neuron. The aim is

to get such a neural network topology that the overall

error of training is less than a specified error

tolerance.

Although the constructive learning strategy can lead

to a neural network with minimal structure, the neural

model is risking being over trained. To solve this

problem, a modified version of this algorithm that

helps in avoiding poor generalization performances

based on regularization technique (early-stopping)

has been proposed in Abid et al. [22]. Early-stopping

consists on stopping the training when a moderate

value of training error is reached. Indeed, in the first

step, learning and generalization criteria begins to

decrease. In a following step, the learning criterions

continue to decrease nevertheless the generalization

one starts to increase. In this moment, the training

should be stopped [23] and [24].

It is to be noted that we are interested in a multi input-

single output (MISO) model and the weights update

is based on the equation (9).

The proposed incremental training algorithm can be

described as follows:

Step 1: choose one pattern from the training base

(L=1). Train the neural network with one hidden

node using the chosen pattern and calculate the

EQMA(1), where: EQMA represents the average

quadratic error of training, which is defined as:

 .
1

1

2

AN

i
i

A

r
N

EQMA (12)

y

xi

x2

x1
wi

1 1

wi

168 S. Abid, M. Chtourou, M. Djemel: Incremental and stable training algorithm for wind turbine…
__

Here: NA and ri indicates the number of samples in the

training set and the difference between the real output

of sample i and output estimated by the neural model,

respectively.

Step 2: if (L<NA), choose the next pattern (L=L+1)

and go to step 3 for training; else (L= NA), end of the

algorithm.

Step 3: train the neural network with Nc hidden nodes

using L patterns from the training set and calculate

the values of EQMA(L) and EQMV(Nc), where

EQMV designates the average quadratic error of

validation,

 .
1

1

2

vN

i
i

v

r
N

EQMV (13)

Here: Nv indicates the number of samples in the

validation set.

If (EQMA(L)<EQMAtol), go back to step 2;

otherwise, go to step 4 for growing where EQMAtol

represents a tolerated value of the average quadratic

error of training.

Step 4: if (Nc=1), then, (Nc= Nc+1) and go back to

step 3; else (Nc>1), two tests should be done to decide

about the evolution of the network structure.

In the case of the growth of the generalization

criterion (EQMV) with a value greater than a

tolerated threshold (EQMVtol), the algorithm should

go to step 5. The same step will be executed when the

generalization criterion decreases. These cases are

summarized as follows:

if

1NEQMVNEQMVor

EQMVNEQMVand

1NEQMVNEQMV

cc

tolc

cc

, then go to step5.

These tests are particularly satisfied in the beginning

of the learning step when the generalization criterion

can have an oscillatory behaviour.

In the third case and when the generalization criterion

grows with a value lower than EQMVtol, then increase

slightly the EQMAtol and re-execute the step 3. This

case is summarized by:

if

tolc

cc

EQMVNEQMV

and

NEQMVNEQMV 1
, then

 toltol EQMAEQMA
where is a constant slightly

higher than 1, and go back to step 3.

In this case, the network structure has a sufficient

hidden nodes and neural network accomplishes good

learning performance with generalization error

tending to increase. In this case, the (EQMAtol) is

increased so as to slow down the recruitment of

hidden nodes.

Step 5: keep the weights of the last successfully

trained neural network, increase the number of

hidden neurons by one and assign its initial weights.

Go to step 3.

These steps can be summarized by the flowchart

presented in Fig. 2.

4 Experiments and discussions

In this section, we present the simulation results. The

capacities of the proposed algorithm are analyzed.

We use this algorithm for the neural identification of

a wind turbine.

The goal of our simulation is to determine the

adequate structure of the input-output neural model

which describes the dynamics of the wind turbine by

using the approach presented in section 3.

The wind turbine parameters used in simulations are

the following [29]:

4.18cet10.636.9c,309082.0c

,10.003.0c,02.0c,10.1023.1c

,5.7,sNmrad7.3k,sNmrad5.1k

,1,kgm4.34J,kgm10.25.3J

,165.43n,m38.21R,kgm225.1

6
2

54

2
32

2
1

opt
1

g
1

r

2
g

25
r

g
3

The input-output neural model describing the wind

turbine is represented in Fig. 3.

The model input vector is constituted by the actual

and previous torque generator (Tg(k) and Tg(k-1)), the

actual and previous rotor rotational speed (a(k) and

a(k-1)) and the actual value of wind speed v(k). The

model output is the future value of the rotor rotational

speed a(k+1).

Based on several simulations, the input vector and the

value of sampling period (t=0.1s) are selected to

obtain the best performance.

The chosen mean wind speed was set at vmoy=12ms-1.

Fig. 4 and 5 represent the input signals Tg(k) and v(k)

respectively, used in the training and validation

phases.

The simulation results describing the performances

of algorithms presented in this paper are illustrated in

Table 1.

Engineering Review, Vol. 33, Issue 3, 165-172, 2013. 169
__

Figure 2. Improved incremental algorithm based on

Lyapunov stability theory.

Figure 3. Input-output neural model.

It can be seen that the proposed algorithm provides

better convergence properties in training and

validation phases when compared to LF1 and

incremental algorithms.

Table 1 shows the contribution from the mixture of

the constructive approach and the algorithm LF1. In

fact we note that the incremental algorithm leads to

satisfactory performances but with a slow

convergence time. Moreover, the algorithm LF1

presents a minimal convergence time with

performances degradation of the obtained model. The

proposed algorithm guarantees both fast convergence

and better learning and generalization abilities.

The simulation results, which relate to the selection

of hidden neurons number using the incremental

training algorithm and Lyapunov stability theory, are

presented in Fig. 6.

Begin

Choose one pattern from the training base

(L=1)

Train the (FNN)s with Nc=1

Calculate EQMA (1).

L < NA

Yes
End

Train the (FNN)s with Nc hidden nodes

and L patterns.

Calculate EQMA(L) and EQMV(Nc).

EQMA(L)< EQMAtol
Yes

No

No

Nc>1

Nc=Nc+1

No

Yes

1NEQMVNEQMVor

EQMVNEQMVand

1NEQMVNEQMV

cc

tolc

cc

tolc

cc

EQMVNEQMVand

1NEQMVNEQMV

EQMAtol = αEQMAtol

Nc=Nc+1

L = L + 1

Yes

Yes

1

1

170 S. Abid, M. Chtourou, M. Djemel: Incremental and stable training algorithm for wind turbine…
__

(a) (b)

Figure 4.Tg (k) used in the training and validation phases ((a): training, (b): validation).

(a) (b)

Figure 5. v(k) used in the training and validation phases ((a): training, (b): validation).

Table 1. Performances of algorithms

Algorithm Numerical simulation parameters EQMA EQMV Nc Run time

LF1(fixed structure) =0.6, =0.001 0,0047 0,004 5 9'

Incremental algorithm =1,01, EQMAtol=0,035, EQMVtol=0,045 0,0032 0,0027 5 17'43"

Incremental algorithm

combined with LF1
=0,6, =0,001, =1,01, EQMAtol=0,035,

EQMVtol=0,045
0,0032 0,0023 5 13'

0 100 200 300 400 500 600
5

10

15

20

k

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

k

0 100 200 300 400 500 600 1000

2000

3000

4000

5000

6000

7000

8000 Training Tg(Nm)

0 20 40 60 80 100 120 140 160 180 200 1000

2000

3000

4000

5000

6000

7000

8000 Validation Tg(Nm)

Training Validation v(ms-1)

 samples

k

samples

k

v(ms-1)

Engineering Review, Vol. 33, Issue 3, 165-172, 2013. 171
__

Figure 6. Training and validation performances for the proposed algorithm ((a): training, (b): validation,

(c): EQMA and EQMV, (d): EQMV(Nc)).

5 Conclusion

In this paper, an improved approach for neural

models selection is proposed. The main contribution

of this method is to show the usefulness of the

association of the constructive strategy and the

Lyapunov stability theory for the synthesis of neural

networks. To confirm the effectiveness of the

developed algorithm, we have used to the neural

modeling of the speed of wind turbine. The

simulation results have demonstrated that the

proposed algorithm not only enhance the training and

generalization abilities but also shortens the runtime

remarkably improving the practicability of this

algorithm in both theoretical and real problems.

References

[1] Burton T., Sharpe D., Jenkins N. and Bossanyi

E.: Wind Energy Handbook, Wiley, Chichester,

UK, (2001).

[2] D. Bianchi F., De Battista H. and Mantz R.J.:

Wind Turbine Control Systems: Principles,

Modeling and Gain Scheduling Design,

Springer-Verlag London Limited, (2007).

[3] Wright A.: Modern Control Design for Flexible

Wind Turbines, Ph.D. thesis. Boulder, CO:

University of Colorado, USA, (2003).

[4] Boukhezzar A.: Nonlinear control of variable-

speed wind turbines for generator torque

limiting and power optimization, Journal Solar

Energy Engineering, Trans. ASME, 128 (2006)

4, 516 – 530.

[5] Fingersh L., Hand M. and Laxson A.: Wind

turbine design cost and scaling model, National

Renewable Energy Laboratory, 45 (2006) 5, 35

– 36.

[6] Novak P., Ekelund T., Jovilk I. and

Schmidtbauer B.: Modelling and control of

variable speed wind turbine drive systems

dynamics, IEEE Control Systems Magazine, 15

(1995) 4, 28 – 38.

172 S. Abid, M. Chtourou, M. Djemel: Incremental and stable training algorithm for wind turbine…
__

[7] Larsen T.J., Madsen H. and Thomsen K.: Aero

elastic effects of large blade deflections for wind

turbines, Delft University of Technology. The

Science of making Torque from Wind, Roskilde,

Denmark, (2004), 238 – 246.

[8] Sargolzaei J., Kianifar A.: Modeling and

simulation of wind turbine Savonius rotors using

artificial neural networks for estimation of the

power ratio and torque, Simulation Modelling

Practice and Theory, Elsevier, 17 (2009), 1290–

1298.

[9] Ekonomou L., Lazarou S., Chatzarakis G.E.,

Vita V.: Estimation of wind turbines optimal

number and produced power in a wind farm

using an artificial neural network model,

Simulation Modelling Practice and Theory,

Elsevier, 21 (2012), 21–25.

[10] Camblong H. : Minimisation de l'impact des

perturbations d'origine éolienne dans la

génération d'électricité par des aéroturbines á

vitesse variable, Thése de l'Ecole Nationale

Supérieure d'Arts et Métiers, Centre de

Bordeaux, (2003).

[11] Reif K., Sonnemann F., and Unbehauen R.:

Nonlinear State Observation Using H

Filtering Riccati Design, IEEE Transactions On

Automatic Control, 44 (1999) 1.

[12] Mehra P. and Wah B. W.: Artificial Neural

Networks: Concepts and Theory, IEEE Comput.

Society Press, (1992).

[13] Rivals I., and Personnaz L. : Réseaux de

neurones formels pour la modélisation, la

commande et la classification, Collection

sciences et techniques de l’ingénieur dirigée par

Suzanne LAVAL, (2003).

[14] Lippmann R. P.: An introduction to computing

with neural networks, IEEE Acoust. Speech,

Signal Process. Mag., 4 (1987) 2, 4-22.

[15] Narendra K. S. and Parthasarathly K.: Gradient

methods for optimisation of dynamical systems

containing neural networks, IEEE Trans.

Neural Netw., 2 (1991) 2, 252-262.

[16] Yu X., Efe M. O., and Kaynak O.: A general

backpropagation algorithm for feedforward

neural networks learning , IEEE Trans. Neural

Netw., 13 (2002), 251-254.

[17] Gori M., and Maggini M.: Optimal convergence

of on-line backpropagation, IEEE Trans. Neural

Netw., (1994), 251-254.

[18] Finnoff W., Diffusion approximations for the

constant learning rate backpropagation

algorithm and resistance to local minima,

Neural Computat., 6 (1994), 285-295.

[19] Zhao Y.: On-line neural network learning

algorithm with exponential convergence rate,

Electrn. Lett., 32 (1996) 15, 1381-1382.

[20] Hagan M. T. and Menhaj M. B.: Training

feedforward neural networks with the

Marquardt algorithm , IEEE Trans. Neural

Netw., 5 (1994), 989-993.

[21] Liu D., Chang T. S., and Zhang Y.: A

Constructive Algorithm for Feedforward Neural

Networks with Incremental Training, IEEE

Transactions on Circuits and Systems.

Fundamental Theory and Applications, 49

(2002) 12, 1876-1879.

[22] Slim A., Mohamed C., Mohamed C. : Méthodes

Statistique et Incrémentale pour la Sélection de

Modèles Neuronaux, 8ème conférence

internationale: Sciences et Techniques de

l’Automatique, STA’07, ASC, 2007.

[23] Hagiwara K. and Kuno K.: Regularization

learning and early stopping in linear networks,

IEEE, (2000).

[24] Chan Z.S.H., Ngan H.W. and Rad A.B.:

Improving Bayesian Regularization of ANN via

Pre-training with Early-stopping, Neural

Processing Letters, 18 (2003), 29-34.

[25] Laxmidhar B., Swagat K., and Awhan P.: On

Adaptive Learning Rate That Guarantees

Convergence in Feedforward Networks, IEEE

Transactions On Neural Networks, 17 (2006) 5,

1116-1125.

[26] Christou P.: Advanced materials for turbine

blade manufacture, Journal of Solar Energy

Engineering, (2007)

[27] Fingersh L., Hand M. and Laxson A.: Wind

turbine design cost and scaling model, National

Renewable Energy Laboratory, 45 (2006), 5, 35-

36.

[28] Song, Y. D., Dhinakaran B. and Bao X. Y.:

Variable speed control of wind turbines using

nonlinear and adaptive algorithms, Wind

Engineering and Industrial Aerodynamics, 85

(2000), 293-308.

[29] Khamlichi A., Ayyat B., Bezzazi M., El Bakkali

L., Vivas V.C., Castano C.L.F.: Modelling and

control of flexible wind turbines without wind

speed measurements, Australian Journal of

Basic and Applied Sciences, 3 (2009), 3246-3.

