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 A physical model for tracer transport in an 

intergranular porous material is presented. 

Particularly, the measured temporal variations of 

a tracer mass concentration inside the physical 

model are compared to the one predicted for the 

same boundary and initial conditions by the 1D 

and 2D analytical solutions of the governing 

differential equation. A non-reactive tracer and 

steady flow conditions are considered. The Péclet 

number for the considered flow is such that the 

molecular diffusion can be neglected. 
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1 Introduction 
 

The importance of studying transport phenomena in 

porous materials is obvious [1, 2]. However, among 

all the variety of conditions under which the 

transport of mass in porous materials can occur [3], 

the main attention is here dedicated to transport 

phenomena that are characteristic for groundwater 

flows [1]. Particularly, the transport of a chemically 

non-reactive tracer in a fully saturated intergranular 

aquifer is considered. Under these circumstances, 

the tracer transport is mainly caused i.e. induced by 

convection. In other words, the velocity vectors of 

the water contained in the intergranular aquifer are 

such that the contribution of molecular diffusion 

can be neglected [4]. Furthermore, to quantify the 

presence of the tracer in the pore structure of the 

aquifer, the scalar field of mass concentration c is 

introduced. In such a case, in each point of the flow 

domain, the mass concentration c is defined as 
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in which ∆m denotes the tracer mass contained in a 

volume ∆V. As is evident, the given definition (1) 

assumes the validity of continuum mechanics i.e. 

the representation of micro quantity on macro scale 

by an averaging process inside the porous material 

contained in the representative elementary volume 

[2]. As a consequence of spatial averaging, the local 

irregular pore structure, which evidently affects the 

convective transport of a tracer, is described on the 

macroscopic scale of observation by introducing the 

dispersive component of the transport [1, 2]. Before 

considering the experimental observations of trace 

transport in a dedicatedly constructed model, it is 

opportune to introduce the basic theoretical 

description of the considered phenomena. 

 

2 Convective-dispersive transport 
 

Before introducing some basic aspects of transport 

processes in porous materials, note that the author’s 

intention is to compare the experimentally measured 

temporal variation of the mass concentration c with 

the one obtained by the one-dimensional and two-

dimensional analytical solution of the governing 

differential equation [5]. For that reason, the 3D 

flow field inside the physical model should be 

manipulated in such a way that it can be classified 

as uniform (at least on a spatial segment of a flow 

domain). In other words, the flow field in the 
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physical model should meet the condition ∂v/∂x=0, 

where the x coordinate direction is parallel with the 

flow direction. The mentioned coincides with the 

assumption under which the analytical solutions of 

the governing differential equation are derived. 

Apart from this condition, the considered analytical 

solutions are derived under the assumption that the 

porous material is homogenous and isotropic [5]. 

Under all these circumstances, and for a transport 

process characterized by the dominant influence of 

convection, the governing differential equation for a 

two-dimensional case, and in a plane perpendicular 

to the gravity force, takes the form 
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and the same equation for 1D is obtained by 

excluding the second term on the RHS, generating 
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in which v denotes the water flow velocity [L/T], DL 

denotes the coefficient of longitudinal dispersion 

[L2/T], DT denotes the coefficient of transverse 

dispersion [L2/T], R denotes the coefficient of 

retardation [1] and λ denotes the coefficient of 

tracer mass degradation [T-1]. For an aquifer with 

effective porosity ne [5] and constant geometrical 

characteristic such as height m and width w, the 

case of instant injection of a tracer with mass ∆M is 

considered. This kind of initial condition can be 

defined as 
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for a 2D case and 
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for a 1D case in which δ(x) denotes the Dirac delta 

function defined as 
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Since the analytical solutions of (2,3) assumes an 

imaginary infinite aquifer, the boundary conditions 

are defined as  

 

   ,0 t,,c  (7) 

 

and  

 

 .0),(  tc  (8) 

 

According to the given assumptions, boundary and 

initial conditions, (2) produces a function c(x,y,t) 

and (3) produces a function c(x,t) that defines the 

spatial distribution of tracer mass concentration c in 

an instant of time t. Note that the spatial distribution 

is given along the streamline at which the tracer was 

injected. The procedure to retrieve the solution can 

be found in the literature [5] and leads to 
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for a 1D case and to  
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for a 1D case. To make the comparison between the 

theory (9, 10) and experiment valid, it should be 

noted that the physical model must ensure such flow 

conditions that will be coherent with the introduced 

assumptions. Also, the experiments should be run 

with the same initial (4, 5) and boundary conditions 

(7,8). Therefore, the briefly given theoretical 

consideration was necessary to appreciate the 

process of planning the experiments, which are 

hereafter presented. 

 

 

3 Physical model 
 

To obtain the needed functional requirements, it is 

concluded that the physical model should contain 

four sections; that are: (i) the working section filled 

with porous material and located between the (ii) 

pump chamber and the (iii) spillway chamber, and 

(6) 

(9) 
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the (iv) volumetric chamber. All the sections and 

their relative positions are illustrated in Fig. 1 [6]. 
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Figure 1. The cross section of the physical model. 

 

To generate the pressure gradient between the pump 

chamber and the spillway chamber (Fig. 1), which 

will consequently induce the flow through the 

porous material, an external pump is used to obtain 

water circulation between these two regions.  

 

Before considering the case of tracer injection and 

its transport with the water flow inside the porous 

material, note that the analytical solution (9, 10) of 

the same physical process will require the velocity v 

of the flow. For this reason, the physical model 

should be firstly used to identify the saturated 

hydraulic permeability K of the contained porous 

material. Namely (by knowing K), the flow velocity 

v can be defined through the Darcy’s law 

 

 ,Ed IKv   (11) 

 

in which vd is the Darcy velocity (not actual velocity 

in the porous material) and IE is the non-

dimensional parameter (i.e. the slope of an energy 

line) defined as  
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For the considered system (Fig. 1), ∆L denotes the 

distance between the pump and the spillway 

chamber and ∆h denotes the difference in water 

level h between the same chambers. By knowing the 

Darcy velocity vd (11), the actual velocity v can be 

computed as [1, 3] 
 

 .
e

d

n

v
v   (13) 

 

Few measurements performed on different samples 

reveal that the effective porosity ne of the used 

porous material is equal to 0.516. As a 

consequence, the actual velocity v (13) is twice the 

Darcy velocity vd (11). From all mentioned, it is 

evident that the velocity v, which is needed in (9, 

10), can be determined only by knowing vd. For this 

purpose, note that the geometrical relationship in 

(12) can be easily measured. In other words; to 

compute the actual velocity v from (13), the 

saturated permeability K must be defined. 
 

3.1 Determination of saturated permeability K 
 

For any porous material, the saturated permeability 

K cannot be measured directly (K can only be 

computed from a known relationship between other 

basic SI physical quantities that can be directly 

measured). In other words, since it is a part of a 

constitutive description of the material (7), its value 

can only be computed from a predefined functional 

relationship. Particularly, as the discharge Q is 

given as the product of the cross section area A of 

the porous material and Darcy’s velocity vd, it 

follows from (11) that the saturated permeability K 

can be computed as 
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  (14) 

 

Note that apart from the discharge Q, all the other 

terms in (14) are geometrical properties of the flow 

and can be determined by using simple 

measurements of the distance between particular 

points. However, to compute K from (14), the flow 

should be steady to ensure that the geometrical 

relations do not change in time. For the constructed 

physical model, a steady flow field and the related 

geometrical properties are illustrated in Fig. 2. 
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Figure 2. Photograph of the physical model with the 

notations for a few geometrical quantities. 
 

It is also important to note that the computation of K 

through (14) assumes that the porous material in the  

physical model is homogenous and isotropic. For 

this purpose, homogenous sand is used (with a 

uniform distribution of granular fractions between 2 

and 3 mm). The used sand can also be treated as 

isotropic porous material (from the statistical point 

of view), which is deduced qualitatively by a visual 

inspection of the contained grains. In other words, 

the shape of the contained grains is nearly spherical, 

meaning that the grains will provide the same 

resistance in any direction of the flow. 

 

Resuming, the computation of K obviously requires 

the measurement of Q (14). A volumetric chamber 

(Fig. 1) is used for this purpose and the 

methodology to obtain Q is shortly discussed 

hereafter. 

 

3.2 Flow measurement 

 

The discharge Q (which is defined as ∆V/∆t) is 

measured volumetrically [6], i.e. by measuring a 

particular volume of water ∆V in a time interval ∆t. 

For this purpose, the physical model contains the 

volumetric chamber (Fig. 1). To illustrate the 

related procedure and the role of the chamber, a set 

of illustrations is given in Fig. 3. 

It is important to note that at the beginning of the 

experiment the volumetric chamber is empty and 

the other two chambers are completely filled with 

water (Fig. 3a). 

It is opportune to exclude the influence of the pump 

Q(h) curve and introduce the valid assumption that 

the pumping rate Q is constant in time.
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Figure 3. Illustrations of water level: a) standstill 

configuration to d) steady flow conditions 

(∂v/∂t=0). 

Strictly speaking, the pumping rate is not constant 

and this is due to the fact that the flow rate of every 

pump is dependent on the water pressure (hp) at 

which the pump works [6]. Namely, from the 

beginning of the experiment (Fig. 3a) to the reached 

steady flow field (Fig. 3d), the water level hp in the 

pump chamber decreased in time. Theoretically, this 

will imply the successive increasing in Q. However, 

in order to establish this difference, the pump had to 

be supplied with different voltage for the purpose of 

inducing a few different steady flow fields. 

 

∆h 

∆L 

A 
v 

a) 
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c) 
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For each of them, the increase in water level in the 

volumetric chamber was carefully measured. In 

each case it was confirmed that the working range 

∆h was small enough so that Q can be assumed as 

constant in time (Fig. 4). 

 

   

Figure 4. A set of photographs taken in equidistant 

time intervals to illustrate the constant 

raising of water level inside the 

volumetric chamber. 

 

As the dispositions of the chambers and the pump 

suggest (Fig. 1), the activation of the pump in the 

initial-standstill configuration (Fig. 3a) will cause a 

decrease in the water level in the pump chamber 

(Fig. 3b) simultaneously increasing the level in the 

spillway chamber. As the spillway chamber was 

previously filled to its top (Fig. 3a), the pumped 

water will start to fulfill the volumetric chamber 

(Fig. 3b).  

 

Under the assumption that the pumping rate Q is 

constant, there would be also a constant rise of the 

volume of the water in the volumetric chamber. 

Once the pumping rate becomes equal to the inflow 

rate from the spillway chamber into the porous 

material (Fig. 3d), the steady flow conditions are 

reached. As a consequence, the water levels in each 

chamber remain constant in time, and the discharge 

Q can be as the water volume ∆V in the volumetric 

chamber divided by a time ∆t needed to reach the 

steady flow conditions.  

 

Note that even the pumping flow rate is constant in 

time; the discharge in the physical model varies due 

to the progressive increasing in the hydraulic 

gradient near the pump chamber (increasing in 

velocity according to 11). However, once the steady 

flow condition is reached, the flow rate in the 

physical model and the pump coincides. Since the 

water level doesn’t change in time under steady 

flow conditions, and under the assumption that the 

pumping rate is constant, the water extracted from 

the model and transported to the volumetric 

chamber divided by the time needed to extract it 

from the model, represents the discharge in the 

physical model, an average value being defined as 

∆V/∆t. Also, it is worth noting that the variations in 

discharging in the physical model taking place 

during the time in which the steady flow conditions 

are reached are not of interest.  

 

Congruently with the above mentioned, the 

discharge Q in the model was indentified to be 

19.94 cm3/s. The obtained steady flow field results 

in a water level hp=15.8 cm in the pump chamber. 

Since the water level hs in the spillway chamber is 

always constant (30 cm), the difference in water 

levels ∆h was 14.2 cm, which finally through (14) 

defines the saturated permeability K=1.64 cm/s [6]. 

A few experiments with different pumping rate 

confirm these measurements.  

 

4 Analysis of the flow field 
 

The comparative study between the measurements 

and theoretical predictions will be justified only if 

the flow field in the physical model is congruent 

with the assumptions used to retrieve the analytical 

solutions of the governing differential equations. 

Since the analytical solution is derived for 1D and 

2D transport processes, it is required to identify a 

stream line inside the physical model along which 

the velocity vector doesn’t change considerably. For 

this purpose, note that the flow field in the physical 

model can be treated as a potential flow [1] and that 

the net of streamlines can be reconstructed by 

knowing the free stream line at the top boundary of 

the flow field (i.e. phreatic surface). The mentioned 

follows from the fact that the flow field is steady 

and the flow domain will be completely defined by 

knowing the free boundary. Accordantly, the free 

streamline can be obtained by integrating the 1D 

Laplace equation [4], which for homogenous and 

isotropic porous materials can be written as 

 

   ,0








dx

dh
xh

dx

d
 (15) 

 

in which the dependent variable h is the water level 

along the coordinated x (which increases in the flow 

direction). By double integration of (15), it follows 

that 

 

∆t 2∆t 3∆t 
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   ,21
2 CxCxh   (16) 

 

in which C1 and C2 are integration constants 

obtained from the known boundary conditions [6], 

which are the water level h1 at the upstream side 

and the water level h2 at the downstream side of the 

model. So, the condition at the upstream side where 

x=0, is that h=h1, from where it can be obtained that 

C2 is equal to (h1)2. On the other side (Figure 2), i.e. 

at the downstream boundary where x=∆L, h=h2, it 

follows that C1= (h2)2 – (h1)2∆L. By inserting the 

computed constants C1 and C2 in (16), the analytical 

solution of (15) defines the water level h(x) in each 

coordinate x as 
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For the flow field in the physical model, which is 

defined by h1=hs=30 cm and h2=hp=15.8 cm, the 

free stream line (17) and a set of ten equidistant 

stream lines are illustrated in Fig. 5. 
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Figure 5. Analytical solution of the free streamline. 
 

To compare the analytical solution (17) with the 

flow field inside the physical model, 4 streamlines 

were visualized with dye injections. The dye was 

injected near the spillway chamber, at four different 

heights, and at different times due to the fact that 

the simultaneous injection was very hard to obtain. 

As a consequence, the dyes were shifted vertically 

and horizontally. The observations were recorded 

with photographs and presented together with the 

analytical solution in Fig. 6.  

 

Firstly, it is worth mentioning that in a steady flow 

field, as the one in the physical model, the trajectory 

of fluid particles will coincide with the streamlines. 

As can be noted (Fig. 6), the dyes trajectory 

coincides with the related streamlines predicted by 

the theory (17). However, the location of the free 

stream line was not exactly predicted. Namely, as 

illustrated in Fig. 6, the free stream line in the 

physical model is slightly moved above the solution 

of the equation (15). The origin of this difference is 

the capillary rising of water in porous materials. 

The empirical quantification of capillary rising, 

known from the literature [3], predicts the 

difference of 1cm, which was also evidenced in the 

physical model. 

 

 
 

 
 

 

Figure 6. Set of photographs taken in equidistant 

time instants after the dyes were injected. 
 

Since the flow is steady and the curved free stream- 

line reveals the presence of vertical component vy of 

velocity vectors v, the horizontal component vx will 

also vary along the physical model. So, to perform a 

comparative analysis between the analytical 

solutions (9, 10) and measurements, an appropriated 

streamline on which the tracer will move with a 

constant velocity v should be found. For this 

purpose, and due to the steady flow (∂Q/∂t=0), the 

increase in flow velocity v can be quantified as a 

consequence of the decrease in water level h (Fig. 

5). Although the change in vx will not be the same 

for different streamlines, the change in vx(x) 

obtained through Q=vxA(h) can be interpreted as an 

average velocity component. Therefore, under the 

assumption that the magnitude of the velocity 

component vy could be neglected (in comparison 

t = ∆t 

 

t = 2∆t 

t = 3∆t 
free streamline 
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with the vx component), Fig. 7 illustrates the 

velocity distribution along the physical model. 
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Figure 7. Spatial distribution of Darcy’s velocity vd 

and the actual velocity v along the 

physical model. 
 

As Fig. 7 shows, the actual velocity vx i.e. v changes 

almost twice between the spillway and the pump 

chamber (Fig. 1). However, it is worth noting that 

there is a rapid increase in v at the end of the 

physical model. On the other hand, between the 

coordinates x=0 and x≈40 cm, the change in v is 

negligible. In other words, the flow path between 

these two coordinates can be used to perform the 

comparative analysis, as is illustrated hereafter. 

 

5 Dye injection and transport 
 

To meet the initial condition (4, 5), the tracer mass 

∆M should be injected instantaneously as the 

analytical solution (9, 10) has suggested. To 

approach this theoretical condition (as much as 

possible), the tracer mass was injected with a 

relatively tight tube (piezometer). So, the dye 

injection may be considered as point phenomena in 

a very small period of time. A few photographs of a 

sequence of dye injection are given in Fig. 8. After 

~ 0.5 sec, the entire tracer contained in the tube was 

omitted in the flow field. 

 

 

 

 

 

 

    
 

    

Figure 8. A sequence of photographs taken after the 

dye injection in the porous material. 

 

Since the mass concentration c is always measured 

indirectly by measuring the electrical conductivity S 

(mS/cm), to increase the initial very small electrical 

conductivity and enable the measurements of S, the 

tracer has been previously salted. Under constant 

pressure and temperature, the relation between the 

mass concentration and the measured electrical 

conductivity S is generally linear, and is given as 

c=0.67S [7] in which the mass concentration c is 

expressed in mg/l and the electrical conductivity S 

in μS/cm.  

It is worth mentioning that the tracer (dye) and the 

water in the physical model already posses initial 

electrical conductivity S. Thus, to measure only the 

increase in electrical conductivity ∆S and to relate it 

to the previously measured mass of a tracer ∆M (4, 

5), the initial value of S has been recorded and used 

as a reference value in these measurements. To 

relate only the mass ∆M with the mass 

concentration c (9,10), the electrical conductivity of 

the tracer has been previously significantly 

increased by adding a salt with mass ∆Ms. In this 

case, in any region inside the porous material the 

electrical conductivity S of a contained water will 

be proportional to the solution mass Mt=∆M+∆Ms.  

 

t = 0 

 

t = ∆t 

 

t = 3∆t 

 

 

t = 2∆t 
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Figure 9. Photographs of a) DIVER position in the 

porous material and b) tracer path. 

 

To measure and record the change in electrical 

conductivity ∆S, a CTD Diver [8] is used and if the 

dimensions of the probe are to be considered, the 

Ion-Selective probes can be regarded as an 

alternative. The Diver position, i.e. the control point 

at which the change ∆S is recorded, is selected so 

that between the point of injection of a dye and the 

measured point of the flow velocity doesn’t change 

significantly, as is illustrated in Fig. 9. 

 

To compute the change in mass concentration (9, 

10) at the same point at which ∆S was measured 

(Fig. 9), the coefficient of retardation R and the 

coefficient of longitudinal dispersion DL should be 

known in advance (note that for a two-dimensional 

case, the coefficient of transverse dispersion αT can 

be obtained as αL/10 which is a regular relationship 

evidenced by measurements in aquifers [1, 3]). For 

this purpose, a few experiments were performed to 

estimate their quantity. For all cases, relative to the 

velocity of the contained water, it was concluded 

that the used porous material doesn’t provide an 

evident retardation in a tracer flow. In other words, 

the retardation coefficient is estimated to be R~1. 

On the other hand, a measurement of the 

longitudinal stretching of the tracer plum between 

the point of entrance in the porous material and the 

control point (Fig. 9) indicates that the coefficient 

of longitudinal dispersivity αL is around 0.1 cm, 

which defines αT as close to 0.01 cm. Namely, αL 

defines the coefficient of longitudinal dispersion as 

DL = v αL [1, 9].  

 

It should be also emphasized that for a dominant 

convective transport, as the one being realized in 

the physical model (Fig. 9), the transversal 

dispersion DT is always smaller than DL. With 

reference to the flow conditions achieved in the 

physical model, αT was indentified to be at least ten 

times smaller than the longitudinal dispersion, 

which is in accordance with the mentioned 

experimental but also in-situ measurements. The 

measured and theoretically predicted variations of 

the mass concentration c at the control point are 

presented in Fig. 10. 
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Figure 10. The measured and predicted time 

variations of mass concentration. 

 

The maximal predicted value of mass concentration 

with the 1D theoretical model is about 20% greater 

than the measured one (Fig. 10). This difference 

arises from the small but still present transversal 

component of dispersivity (DT), which spreads the 

traces around the region at which the Diver was 

positioned (Fig. 9). On the other hand, due to the 

extra dimension, the 2D analytical model enables 

the spreading of the salt in a plane perpendicular to 

the gravity force which consequently gives better 

L = 40cm 

tracer injection 

(Fig. 8) 

t0 = 0 

 

t > t0 

 

Q = const. 

Q = const. 

a) 

b) 

control 

point 
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results by reducing the peak mass concentration 

(Fig. 9). Correspondingly, it can be concluded, as 

expected, that the 3D analytical solution will give 

even better results. 

 

The difference in the area below the curves is the 

tracer mass, which was not detected because it was 

above and below the Diver. However, if the 

wideness of the curves is considered (Fig. 10), it 

follows that the longitudinal dispersion DL has been 

correctly predicted, which can be supported by the 

fact that the span of the curves is about the same. 

Taking into account the time at which the mass Mt 

reaches the position in which the mass 

concentration has been measured and calculated, it 

can be seen that in such a case of a physical model, 

the increase in c has started before the theory 

predicts. However, the difference is again relatively 

small and can be referred to the still small change in 

velocity along the streamline at which the tracer 

was injected. Namely, as Fig. 7 shows, the 

horizontal velocity increases as the flow approaches 

the other side of the physical model, i.e. it is not 

exactly the same as the analytical solution (9, 10) 

requires. Interesting enough, the measured variation 

in mass concentration is not symmetrical as it 

should be. This observation can be understood 

provided that Diver geometry has been considered. 

Namely, the sensor which measures the electrical 

conductivity is placed at the bottom of the Diver in 

a chamber that is only opened on one side. The 

Diver is placed in the way that the open side of a 

chamber faces the direction of the flow. 

Considering the local flow field, this orientation of 

a one side open chamber will briefly retain the 

tracer and release it gradually with the constantly 

supplied clean water. The difference in time needed 

to enter and leave the chamber manifests itself as 

the asymmetrical temporal variation in c (Fig. 10). 

 

6 Concluding remarks 
 

A physical model for tracer transport inside an 

intergranular porous material has been elaborated. 

To obtain the essential ingredient of objectivity for 

all measurements, the physical model constructed 

with the intention of controlling the flow 

parameters. For this purpose, i.e. to check (for the 

purpose of checking) whether the intention was 

achieved, the 1D and 2D analytical solutions of a 

related governing differential equation for mass 

transport in porous media was used to compare 

whether the theoretically predicted temporal 

variation of the mass concentration c is in 

accordance with the measured one at the same point 

in the flow domain. Namely, for this purpose, it was 

necessary to control the flow field inside the 

physical model so that the assumptions under which 

the analytical solution is retrieved can be valid. 

Except small discordance in values, arising from a 

previously discussed known origin, the tracer 

transport is shown to be qualitatively and 

quantitatively the same as the one predicted by 

theory. However, the 2D analytical solution, as 

expected, gives better results than the 1D model, i.e. 

it shows a better agreement with the measured data. 

This is due to the fact that the 2D analytical model 

introduces the possibility of spreading the salt in the 

plane perpendicular to the gravity force, reducing 

thus the peak mass concentration. Undoubtedly, 

both analytical solutions predict too much salt 

(about 20%) at the measured point and this is due to 

the fact that the possibility of spreading the salt is 

reduced by reducing the dimensionality of the flow 

field. Accordingly, the 3D analytical solution will 

give even better results because it includes the 

spreading of the salt in the vertical direction. 

According to all the mentioned, it can be concluded 

that the flow field inside the physical model can be 

controlled. However, due to the geometry of the 

flow i.e. the width of the working section of the 

physical model, the used Diver cannot be 

recommended for further measurements, given the 

fact that the local flow field around the Diver is 
significantly influenced by its presence (Fig. 10). 

However, we can conclude that in case the 

dimensions of the probe are taken into 

consideration, the Ion-Selective probes can be 

regarded as an alternative to the CTD Diver.  
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