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Abstract: Besides many advantages of wavelet transform, it has several drawbacks, e.g. ringing, shift 

variance, aliasing and lack of directionality. Some of them can be eliminated by using wavelet packet 

transform, stationary wavelet transform, complex wavelet transform, adaptive directional lifting-based 

wavelet transform, or adaptive wavelet filter banks that use either L2 or L1 norm. This paper contains an 

overview of these methods.  
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1. INTRODUCTION  
 

Sparse representation of signals (images, movies or 

other multidimensional signals) is very important 

for a wide range of applications, such as 

compression, denoising, feature extraction, 

estimation, superresolution, compressive sensing 

[1], blind separation of mixtures of dependent 

signals [2] and many others. In most cases, linear 

transformations or filter banks are used for 

obtaining the sparse representation, e.g. discrete 

cosine transform (DCT) or DCT filter bank; discrete 

wavelet transform (DWT) or DWT filter bank. 

Hence, some variants of these transformations are 

involved in modern methods for the compression of 

signals (MP3…), images (JPEG, JPEG2000…), as 

well as in many other implementations.  

An important advantage of the DWT is low 

computational complexity when it is implemented 

using wavelet filter banks. Usually, finite support 

filters are used for decomposition and 

reconstruction. Wavelet transform provides sparse 

representation for a large class of signals. However, 

DWT filter banks have several drawbacks: ringing 

near discontinuities, shift variance, the lack of 

directionality of decomposition functions and some 

others. Recently, a lot of research and publications 

are focused on solving these problems.  

One of the methods for obtaining sparser 

representation and lower dissipation in wavelet 

domain is the use of adaptive wavelet filter banks 

[3][4]. Lower ringing is achieved when L2 or L1 

norm is minimized in some neighborhood of each 

data sample by adapting wavelet functions [5][6]. 

Problems with directionality and shift variance in 

2D or n-dimensional wavelets can be reduced using 

the dual tree complex wavelet transform [7]. 

Moreover, adaptive directional lifting-based wavelet 

transform adjusts directions in dependence of the 

image orientation in the neighborhood on every 

pixel. It achieves directionality and sparse 

representation [8]. In all implementations, 

improvement can be reached using multiple 

representations. More statistical estimators with 

known properties for the same estimated value will 

give better quality of the estimation. One possible 

solution for the realization of multiple 

representations in wavelet domain for denoising is 

given in [9].  

 

In this paper we give an overview of some of the 

mentioned methods. 

 

2. WAVELET TRANSFORM 
 

Every analog signal ���� with finite energy can be 

decomposed into a sum of shifted and dilated 
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wavelet functions ���� and shifted scale functions ����: 

 

���� � � 	�
���t � k�∞
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∞

��� , 
 (1) 

 

where c(k) are scale coefficients and d(j,k) wavelet 

coefficients. This is a dyadic variant of the discrete 

wavelet transform (DWT). Scale and wavelet 

coefficients are calculated using scalar products:  

 

 	�
� � � ������� � 
���∞�∞
, (2) 

 ���, 
� � 2�� � ������2�� � 
���∞�∞
. (3) 

 

Hence, filter banks with perfect reconstruction 

property can be used as a simple realization of the 

DWT (Figure 1). Filter ��� � is low-pass and 

associated to the scale function. The filter �!� � is 

high-pass and linked to the wavelet function [10]. 

Lifting scheme is another efficient way of 

realization of the DWT. Filter S(z) is the prediction 

stage of the lifting step and filter T(z) is the update 

stage. The result of the low-pass filtering is 

approximation A, and the result of the high-pass 

filtering is detail D. Alternating appropriate lifting 

steps can provide for desired frequency response of 

the filters (Figure 2) [11]. 

 
 

 

Figure 1. Wavelet filter bank 

 

 

 
 

Figure 2. Lifting scheme 

 

3. 2D WAVELET TRANSFORM 
 

Separable 2D discrete wavelet transform is the 

simplest form of the two-dimensional wavelet 

generalization. It consists of a standard 1D DWT 

applied to each row and then to each column. If an 

image has N1 rows and N2 columns, decomposition 

results in four quarter–size images (N1/2 x N2/2): 

details (AD, DA, DD) and approximation AA. 

Approximation AA is product of two low-pass filters 

and provides for an input to the next decomposition 

level (Figure 3). The reconstruction is performed in 

the opposite way: first on columns, then on rows.  

Separable 2D DWT has three wavelet functions (m 

and n are coordinates of the input image): 

 

 �!�",  � � ��"��� �   LH wavelet, 

 ���",  � � ��"��� �   HL wavelet, (4) 

 �#�",  � � ��"��� �   HH wavelet, 

 

and one scale function ��",  � � ��"��� � 

associated to the approximation AA [12].  

HH wavelet is the output of the cascade of the high-

pass filters which produce the function � from the 

rows (dimension m) and columns (dimension n). Its 

frequency response has �45° and �45° 

orientations. This is called a checkerboard artifact. 

The separable 2D DWT always gives quadrant 

symmetric frequency responses. So, if the direction 

is important, it always fails in providing a sparse 

representation. 

In an analogous way, separable 2D DWT can be 

efficiently realized using 1D lifting steps. 

 

 
 

Figure 3. Separable 2D wavelet transform 

 

4. DRAWBACKS OF THE DWT  
 
Although wavelet transform has a lot of benefits 

compared to the Fourier transform, there still exist 

some drawbacks [5]: 

Problem 1. Oscillations. Wavelet coefficients 

oscillate with positive and negative values around 
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the singularities, which complicate their detection 

and modeling.  

Problem 2. Shift variance. If input signal is shifted 

in time or space, wavelet coefficients of the 

decimated DWT will be changed. 

Problem 3. Aliasing. Wavelet coefficients are 

calculated using iterative time discrete operations 

with the non-ideal high and low pass filters. 

Therefore, aliasing can appear. Inverse DWT 

cancels aliasing, but only if the wavelet coefficients 

were not processed. 

Problem 4. Lack of directionality. Separable 2D 

DWT efficiently detects horizontal and vertical 

edges. But, if the edges are under an acute angle, 

unwanted checkerboard artifacts appear.  

One of the possible solutions for mentioned 

problems is the wavelet packet transform. 

 
5. WAVELET PACKET TRANSFORM 
 

The wavelet packet transform is based on wavelet 

filter bank (Figure 1), although the high-pass 

channel is also decomposed in similar manner and 

iterated as the low-pass channel (Figure 4). The 

complete tree is achieved. It offers high degree of 

freedom but with complex data-structure algorithms. 

The selection of best filters reduces shift sensitivity. 

However, a general representation of wavelet packet 

is not shift invariant. Wavelet packets perform better 

in terms of fidelity of direction but not in terms of 

improved directionality. The high-pass coefficients 

will oscillate around singularities of the signal 

[13][14]. 

 

 

Figure 4. Wavelet packet transform 

6. STATIONARY WAVELET 
TRANSFORM 

 

The decimation step after filtering makes the 

standard DWT shift variant. Therefore, stationary 

wavelet transform has a similar tree structure 

without any decimation. The balance for perfect 

reconstruction is preserved through upsample the 

filters (Figure 5). Wavelet coefficients at each level 

are of equal length and the method is shift-invariant. 

A drawback is a very large redundancy and 

increased computational complexity. The lack of 

directionality and oscillating persist because the 

stationary wavelet transform is based on a filterbank 

structure [13][15]. 

The complex wavelet transform (&WT) solves the 

checkerboard problem. It is based on the Hilbert 

transform. 

 

 

 
 

Figure 5. Stationary wavelet transform 

 
7. THE HILBERT TRANSFORM  
 
Real sine signal )sin�-� � �� in Fourier domain 

consists of two frequencies, positive - and negative – -. Complex exponential signal )/��0123� 
contains only one frequency -. If the signal does 

not have negative frequencies, being causal in the 

frequency domain, it is called the analytic signal. 

Hilbert transform filter 4��� � 56����7 can be 

applied to real signals to produce complex part of 

the analytic signal.  

The impulse response of the Hilbert transform filter 

is �5��� � 1 9�⁄ . Its Fourier transform is ;61 9�⁄ 7 � �� < sign�-�. The response of the 

Hilbert transform filter for input signal ���� and for 

its frequency response ?�-� is given by convolution 

 

 56����7 � �1 9�⁄ � @ ���� (5) 
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in the time domain or by multiplication in the 

frequency domain  

 

 A�-� � ;656����77 � �� < sgn�-�?�-� (6) 

 

Analytic signal is the sum of a signal and its Hilbert 

transform multiplied by j: B��� � ���� � �4��� or  

 

 C�-� � ?�-� � �A�-� � D2?�-�,   - E 0,?�-�,     - � 0,0,             - G 0.H (7) 

 

Fourier transform of analytic signals equals zero for 

negative frequencies and is generally non-zero for 

positive frequencies [16][17]. 

 
8. COMPLEX WAVELET TRANSFORM 
 
The wavelet function is often real, so it is not 

analytic. Using the Hilbert transform, every real non 

analytic wavelet function can be converted into an 

analytic one. Let us denote complex wavelet 

function as �I��� � �J��� � ��K��� where �J��� is 

real and �K��� is imaginary part. Moreover, let �J��� and �K��� make the Hilbert transform pair. 

The same goes for the complex scale function: �I��� � �J��� � ��K���, where �J��� is real and �K��� is imaginary part and they form a Hilbert 

transform pair, too [18]. The &WT can be used for 

analyzing either real or complex signals [7]: it 

solves most of the problems from Chapter 4.  

The most common approach for realization of the &WT with the Hilbert transform is the dual-tree 

approach (Figure 6) [19]. The dual tree approach 

uses two real DWT-s: one for acquiring the real part 

of the transform, and the other for the imaginary 

part. Real wavelet �J��� is associated with the 

upper tree, and imaginary wavelet �K��� is 

associated with the lower tree. Each tree uses 

different sets of filters that satisfy perfect 

reconstruction conditions. ��� � is a low-pass and �!� � is a high-pass filter for the upper filter bank, 

and N�� � and N!� � are the low and the high-pass 

filters for the lower filter bank.  

Low-pass filters ��� � and N�� � must be designed 

so their wavelet functions are approximate Hilbert 

transform pairs �K��� O 56�J���7. It appears that 

the connection between them is a half-sample delay: 

 

 N�� � � ��� � 0.5� (8) 

 

 
 

Figure 6. Realization of the dual – tree complex 

wavelet transform 

 

Since these filters are discrete, the half-sample delay 

cannot be exactly realized. Therefore, the term is 

expounded into the magnitude and the phase 

functions of the Fourier transform: 

 

 PQ��/�0�P � PR��/�0�P, (9) 

 SQ��/�0� � SR��/�0� � 0.5 < -. (10) 

 

Impulse response of filter R��/�0� is of infinite 

length, and its transfer function is not rational. Even 

if it were of finite length, N�� � would not be. Thus, 

given conditions will be used only approximately 

and the complex wavelets will be approximately 

analytic. Some methods of the filter design are 

described in [7].  

In practice, it turns out, that the same filters in every 

level of the dual–tree decomposition do not get a 

good approximation of the analytic wavelets. One 

possible solution for this problem is the use of 

different filters for the first stage, e.g. the same 

short–length filters in both trees, but shifted for one 

sample. On every other level, the filters need to 

satisfy the half–sample delay, as already mentioned. 

Another variant is an implementation that utilized 

swapping. The filters of the upper and the lower tree 

are alternated in each decomposition stage: filters ��� � and �!� � are in the upper tree at the even 

levels, while filters N�� � and N!� � are there at the 

odd levels [7]. 

Separable 2D &WT generalization is obtained in 

analogous way as for the real wavelets. 1D &WT is 

applied first on each row, and then on each column. 

Since the &WT is implemented using the dual–tree 

approach, the resulting 2D &WT will have four 

trees. Two of them provide for the real parts and 

two of them provide for the imaginary parts of the 

wavelet coefficients.  
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After the transform is applied to the rows, the 

wavelet function is �I�"� � �J�"� � ��K�"� and 

the scale function is �I�"� � �J�"� � ��K�"�. 

Then, the transform is applied to the columns, and 

the wavelet function is denoted as �I� � ��J� � � ��K� �, while the scale function is �I� � � �J� � � ��K� �. All functions are analytic 

and oriented. To get all orientations of the complex 

2D wavelets, the preceding functions must be 

multiplied as follows: 

 �!�",  � � �I�"��I� � � �J!�",  � � ��K!�",  �, (11) ���",  � � �I�"��I� � � �J��",  � � ��K��",  �, (12) �#�",  � � �I�"��I� � � �J#�",  � � ��K#�",  � 
(13) �T�",  � � �I�"��I� � � �JT�",  � � ��KT�",  � 
(14) 

�U�",  � � �I�"��I� � � �JU�",  � � ��KU�",  � 
(15) 

�V�",  � � �I�"��I� � � �JV�",  � � ��KV�",  � 
(16) 

 

where new six wavelets have real and imaginary 

parts 

 �J��",  � � 1√2 X�!,� �",  � � ��,��",  �Y, (17) 

�J��2#��",  � � 1√2 X�!,� �",  �� ��,� �",  ��, (18) 

�K��",  � � 1√2 X�#,��",  � � �T,� �",  �Y, (19) 

�K��2#��",  � � 1√2 X�#,� �",  �� �T,� �",  ��. (20) 

 

for 
 � 1,2,3 and  

 �!,! �",  � � �J�"� < �J� �, ��,! �",  � � �K�"� < �K� �, �#,! �",  � � �K�"� < �J� �, �T,! �",  � � �J�"� < �K� � 

(21) 

 

for the LH wavelet;  

 

 

 

�!,� �",  � � �J�"� < �J� �, ��,� �",  � � �K�"� < �K� �, �#,� �",  � � �K�"� < �J� �, �T,� �",  � � �J�"� < �K� � 

(22) 

 

for the HL wavelet; and  

 �!,# �",  � � �J�"� < �J� �, ��,# �",  � � �K�"� < �K� �, �#,# �",  � � �K�"� < �J� �,  �T,# �",  � � �J�"� < �K� � 

(23) 

 

for the HH wavelet. Factor 1 √2⁄  is introduced for 

orthonormality. 

The 2D &WT is four times more computationally 

complex than the standard 2D wavelet transform. 

But, the real and the imaginary parts are oriented 

equally and problems with checkerboard effects are 

minimized. This transform is approximately analytic 

and therefore approximately shift invariant 

[7][20][21].  

Another, completely different, approach for solving 

the problem of the checkerboard effects is using the 

adaptive directional lifting-based wavelet transform. 

 

9. ADAPTIVE DIRECTIONAL LIFTING-
BASED WAVELET TRANSFORM 

 

Unlike traditional 2D DWT, in the adaptive 

directional lifting-based wavelet transform (ADL) 

each lifting step depends on a local orientation of an 

image. The orientation does not necessarily have to 

be horizontal or vertical [8]. 

A typical lifting scheme begins with splitting the 

samples of the input image on even �[�",  � and 

odd subset �\�",  � at some index n.  

In the prediction step, the odd samples are predicted 

from the neighboring even samples. Here, the 

neighboring samples do not have to be from the 

horizontal or the vertical direction only. They can be 

positioned at some angle ]^, as well. Prediction of 

the odd samples is calculated using: 

 _\�",  � � � `K�[�" � sign�a � 1�K < tg]^,  � a�, (24) 

 

where `K are weights given by the filter coefficients. 

An optimal angle can result in that the samples �[�" � sign�a � 1� < tg]^ ,  � a� are not at the 

integer position on the image. Hence, interpolation 
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filters parameters ak can be found using some 

interpolation technique, like sinc function or by 

some other interpolation filter. One good method is 

minimizing the least-square error: 

 

min…defg,de,dehg,… � i�\�",  �j,k� � l��[�",  � 
�� m� . (25) 

 

Although the prediction angle is a continuous 

variable, it has been found that nine uniformly 

quantized discrete angles ]K, a � 0, n1, n2, n3, n4 

are good enough in many applications of the ADL.  

High-pass wavelet coefficients are given as a 

difference of the predicted and real values: 

 

 ��",  � � �\�",  � � _\�",  �. (26) 

 

In the update stage, even samples are found by: 

 op�",  � � � q���" � sign��� < tg]^,   H�  

 � ��. (27) 

 

where qK are weights given by the filter coefficients. 

Angle ]^ does not have to be equal to the angle in 

the predict stage, but most often, it is. As before, ��" � sign��� < tg]^ ,  � �� does not necessarily 

have integer values, so it needs to be interpolated 

between pixels.  

The low-pass coefficients are given by adding  

 

 r�",  � � �[�",  � � op�",  �.  (28) 

 

After the 1D ADL is performed on each index n (the 

generalized vertical transformation), the generalized 

horizontal transformation is performed on each 

index m in the same way as before. Optimal 

predicted angle of the generalized horizontal 

transformation ]p does not have to be necessarily 

perpendicular to the vertical angle ]^ [8]. 

As usual, more decomposition levels can be used. 

Hence, the ADL is well adapted to directional 

properties of images [8][22]. But, for reducing 

ringing near the edges, another adaptive approach 

should be used.  

 

 

 

10. ADAPTIVE WAVELET FILTER 
BANK 

 

The realization of an adaptive wavelet filter bank is 

given in Figure 7. The parameters s!, s� and s# are 

found in such a way that detail D(z) is minimal. 

Plenty of the adaptation methods can be used for the 

minimization: the minimum of least squares errors 

on a window, weighted least squares with forgetting 

factor or an iteratively reweighted least square 

which enables minimization of the arbitrary norm, 

e.g. minimum least absolute values [3][5][6].  

For a sliding window of the length N, we obtain A � t < ], where A � u 4v� � … 4v� � w�xy is 

the output, ] � us! s� s#xy are the estimated 

parameters, and 

 

 t � z o!� � o�� � o#� �o!� � 1� o�� � 1� o#� � 1�… …  o!� � w� o�� � w� o#� � w�{ (29) 

 

is the input matrix. The estimation error is  

 

 | � A � tθ.  (30) 

 

The well-known solution for the minimum of the 

least square error (L2 norm) 

 

 }�]� � |y|, (31) 

 

is  

 

 ]~ � �tyt��!tyA. (32) 

 

If W is a weighted matrix, the cost function is 

 

 }�]� � |y�|  (33) 

 

and the solution is  

 

 ]~ � �t�Wt��! < t�WA. (34) 

 

If diagonal elements of the weighted matrix are  

 

 �KK � !P�����θ~P, (35) 

 

where y� is the i-th element of the vector y, and U� is 

the i-th row of the matrix U, the cost function is  

 

 F�θ� � |�|. (36) 
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This is exactly the sum of the absolute values or L1 

error norm. Since θ~ is not known in advance, W�� is 

also not known: they must be found iteratively. The 

minimum of the least absolute values gives sparser 

representation than the minimum of the least 

squares (Figure 8). Parameters of the update stage 

are optimized analogously. Separable or non-

separable solutions can be implemented for the 2D 

signals, as well [5][6]. 

 

 
Figure 7. First stage of the lifting scheme with 

adaptive filters 

 

 
Figure 8. Comparison of the minimum least square 

error and the least absolute error 

 
11. CONCLUSION 
 

In this paper, several decomposition methods for 1D 

and 2D signals are described. One method was 

developed by the authors of this paper; the others 

are a selection of the state-of-the-art signal and 

image transform techniques. The dual–tree complex 

wavelet transform (&WT) is presented and the 

design of the filters for its realization is described. 

The main advantage of the &WT is its approximate 

shift invariance and lesser directional sensitivity. If 

the image contains textures that are under certain 

angle, the adaptive directional lifting–based wavelet 

transform (ADL) can be used. It adapts to the 

directions of the decomposed signal. Finally, the 

adaptive wavelet lifting filter bank developed by the 

authors of this paper provides less ringing near the 

singularities and thus sparser representation of 

signals in the transform domain. 

This paper gives an overview of signal and image 

transform methods that provides for sparser 

representation, which is a very important property 

for applications such as denoising, estimation, 

compression, compressive sensing, blind separation 

of statistically dependent sources and many others.  

 
12. LIST OF SYMBOLS 
 

1D and 2D wavelet function ����,��",  � 

Wavelet coefficient ���, 
� 

1D and 2D scale function ����,��",  � 

Scale coefficient 	�
� 

Complex wavelet and scale func. �I, �I 

Real wavelet and scale func. �J, �J 

Imaginary wavelet and scale func. �K, �K 
Low-pass filters h0(n),g0(n),S(z) 

High-pass filters  h1(n),g1(n),T(z) 

Approximations A, AA 

Details D,AD,DA,DD 

Input signal, even and odd samples x, xe, xo 

Filtering parameters `, q, l 

High and low pass coefficients   h, l 

Horizontal and vertical angle  ]p, ]^ 

Prediction of even and odd samples  uh, p0 

Sliding window N 

Inputs, outputs for optimization U, u1,…, Y, yd 

Parameters for optimization ], b1, b2, b3 
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