Energy dissipation characteristics of an in-chamber longitudinal culvert system with three-layer side ports designed for a large-scale lock with 60m water head
Abstract
With the rapid development of the water transportation industry in China, the scale of ships navigating in the inland waterway is increasing. However, the water head formed by dams is very high, especially for the hydroelectric projects constructed in the upper mountain river. Therefore, it is critically urgent to build several high-head and large-scale locks. Moreover, when the water head is increased to 60 m, huge water energy could be generated and then introduced into the corresponding lock chamber if the valve operating time is limited. This paper presented the in-chamber longitudinal culvert system with three-layer side ports to efficiently dissipate the water energy to ensure safe mooring conditions for ships during a lock operation. A three-dimensional CFD model for 1/4 local region of the corresponding chamber was developed to predict its hydraulic behavior. The numerical simulations were conducted to examine the effect of the vertical spacing between side ports on the energy dissipation result. Results showed that good energy dissipation performance was gained when the relative vertical spacing was set B/D=0.25 (B is the vertical spacing between side ports, D is the inner height of the culvert). Furthermore, the energy dissipation mechanism of this arrangement was presented based on the results of a three-dimensional hydraulic characteristic. In addition, the corresponding dissipation result of the present arrangement was compared with those of the single-layer and two-layer side ports. The dissipation performance of the present design was found to be the best if all the side ports’ cross-section area of each arrangement keeps the same.Downloads
Published
Issue
Section
License
Copyright (c) 2023 Engineering Review

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Engineering review uses the Creative Commons Attribution-NonCommercial-NoDerivatives (CC-BY-NC-ND) 4.0 International License, which governs the use, publishing and distribution of articles by authors, publishers and the wider general public.
The authors are allowed to post a digital file of the published article, or the link to the published article (Enginering Review web page) may be made publicly available on websites or repositories, such as the Author’s personal website, preprint servers, university networks or primary employer’s institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the published article, under the condition that the article is posted in its unaltered Engineering Review form, exclusively for non-commercial purposes.
The journal Engineering Review’s publishing procedure is performed in accordance with the publishing ethics statements, defined within the Publishing Ethics Resource Kit. The Ethics statement is available in the document Ethics Policies.