Surface stress evolution and cracks prevention of ingots during the upsetting process
Keywords:
surface stress, axial stress, surface cracks, bulging, upsettingAbstract
In this research, surface axial stress and propagation of surface transverse cracks on large ingots during hot forging process was studied using finite element modeling. The simulation results show that surface axial stress changes from compressive to tensile during the upsetting process. Large ingots which need to be upset and stretched several times are easy to form cracks at anvil overlapping part during stretching process. These surface transverse cracks are crack source and mayrapidly propagate under surface axial tensile stress during the upsetting process. The effect of material, temperature, height-diameter ratio of billet, deformation speed, and friction coefficient between anvil and billet on the changing of surface axial stress was investigated. The results show that critical transformation point of surface axial stress from compressive to tensile has an obvious relationship with drum shape of the billet. In order to eliminate the surface axial tensile stress and prevent propagation of surface transverse cracks, a slim waist forging process was proposed based on the surface stress analysis. A quantitative designing method of slim waist billet was established forguiding industrial production.Downloads
Published
Issue
Section
License
Engineering review uses the Creative Commons Attribution-NonCommercial-NoDerivatives (CC-BY-NC-ND) 4.0 International License, which governs the use, publishing and distribution of articles by authors, publishers and the wider general public.
The authors are allowed to post a digital file of the published article, or the link to the published article (Enginering Review web page) may be made publicly available on websites or repositories, such as the Author’s personal website, preprint servers, university networks or primary employer’s institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the published article, under the condition that the article is posted in its unaltered Engineering Review form, exclusively for non-commercial purposes.
The journal Engineering Review’s publishing procedure is performed in accordance with the publishing ethics statements, defined within the Publishing Ethics Resource Kit. The Ethics statement is available in the document Ethics Policies.