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Sažetak: U radu se razmatra jedna od brojnih pojava odziva iz područja interakcije fluida i strukture, tj. vrtlogom 
uzbuđene vibracije. Napravljen je dinamički model istraživane žičare sa dva čelična užeta. Matematičke jednadžbe su 
izvedene i riješene pomoću numeričke simulacije. Predložena je metodologija za istraživanje zračnim vrtlogom 
uzbuđenih vibracija žičare. Svi rezultati, dobiveni tijekom simulacija, su uspoređeni sa eksperimentalnim rezultatima 
pri čemu podudarnost zadovoljava inženjerske kriterije. Predloženi modeli su intuitivni za korisnike i fleksibilni te je 
stoga potaknuta njihova primjena za znanstvene i inženjerske potrebe. 
 

Ključne riječi: – žičara sa dva čelična užeta 
– uzbuda vrtlogom 
– numerička simulacija 

 
Abstract: The presented work discusses one of the many response phenomena in the field of fluid–structure interaction, 
i.e. vortex-excited vibrations. The dynamic model of the examined bicable ropeway is created. Mathematical equations 
are derived and solved by means of numerical simulation. A methodology for studying the vortex-excited vibrations in 
aerial ropeways is suggested. All results, obtained during the simulation, are compared to experimental data and the 
coincidence satisfies the engineering criteria. The proposed models are user-friendly and flexible and thus their 
applicability for scientific and engineering purposes is actuated. 
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1. INTRODUCTION  
 
The interaction between a fluid flow and an embedded 
elastic body is extremely complex. Different response 
modes and flow phenomena exist depending on the flow 
characteristics, the body geometry and the structural 
properties like stiffness and damping. An essential 
requirement in the design of modern engineering 
structures, including ropeways, is to assess the influence 
of wind forces on structural response. This highlights the 
importance of understanding the phenomena, which 
determine the interaction between wind and structure and 
the need for reliable methods of its analysis. Today 
several different response phenomena in the field of 
fluid-structure interaction have been identified and 
grouped into response and stability problems. During the 
18th and 19th century, various discoveries led to a better 
understanding of the factors that have an influence on the 
movement of solid bodies through air. By the early 1800s 
the relationship between resistance and the viscous 
properties of a fluid had been discovered, but it was not 
until the experiments of Reynolds in the 1880s that the 

significance of viscous effects was fully appreciated. 
Parallel to this, Strouhal [1] had already investigated the 
vortex shedding process on a circular cylinder and 
formulated a dimensionless shedding frequency now 
widely known as the Strouhal number. In 1911, von 
Kármán made an analysis of the alternating double row 
of vortices behind a bluff body fluid stream, now famous 
as von Kármán Vortex Street, [2].   
The vibration phenomena found in bluff body 
aerodynamics are numerous and it is fruitful to group 
them by their origin and major characteristics. One such 
classification was proposed by Naudascher and Rockwell 
who distinguish 3 types of flow induced excitation as: 
• Extraneously induced excitation (e.g. periodic 

pulsation of oncoming flow); 
• Instability-induced excitation (flow instability 

inherent to the flow created by the structure under 
consideration), e.g. excitation induced by the von 
Kármán street; 
• Movement-induced excitation (fluid forces arising 

from the movement of the body or eventually of a fluid 
oscillator), e.g. galloping. 
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It should be noted that these forces can act 
simultaneously.  
When a bluff body is embedded in a fluid flow, it may 
cause a wake to form behind the body. In the wake, the 
flow is turbulent but a distinguished pattern of vortices 
can usually be seen. These vortices are shed from the 
surfaces of the body and are then carried downstream. It 
is this shedding of vortices that induces an unsteady force 
on the body perpendicular to the undisturbed flow 
direction. The nature of the vortex shedding, particularly 
the frequency thereof, is determined largely by the 
geometry of the body, the speed of flow and the density 
and viscosity of the fluid. If the body is not rigidly 
mounted but has a degree of freedom associated with 
certain stiffness in the direction of the periodic force it 
will exercise an oscillation due to its inertia and the 
forcing action. If the natural frequency is close to the 
shedding frequency, resonance will occur. These vortex-
induced vibrations can also be experienced by ropeways 
as will be discussed later on. They may, generally, be 
overcome by either changing the geometry of the 
structure (the gondola or the entire span) to shift the 
natural frequency away.  
 
2. THE VORTEX SHEDDING PROCESS  
 
The process of vortex shedding, ([3] and [4]) can only be 
explained if the effect of viscosity is considered. Only a 
viscous fluid will satisfy a no-slip condition of its 
particles on the surface of a body immersed in the flow 
[5]. Even if the viscosity is very small, this condition will 
hold but its influence on the flow regime will be confined 
to a small region: the boundary layer along the body. 
Within this boundary layer the velocity of the fluid 
changes from zero on the surface to the free-stream 
velocity of the flow. Whilst the free stream is pulling the 
boundary layer forward the skin friction at the solid wall 
is retarding it. At surfaces with high curvature, there can 
also be an adverse pressure gradient adding to the 
retarding action, which may cause the flow to be 
interrupted entirely and the boundary layer may detach 
from the wall. This is called separation. 
In slender structures, regular vortex shedding may occur 
if the separation line is nearly straight. This is always the 
case in structures with straight corners or in a circular 
cylinder at special Reynolds numbers. The principle of 
the vortex shedding is shown in Figureure 1. 
The flow separation on the right side (in the flow 
direction) produces a circulation, Г+ , in the wake of the 
cylinder. According to Thomson’s vortex law, a counter 
circulation, Г− , occurs around the cylinder, which 
produces a circulation flow uΔ , clockwise around the 
cylinder. This velocity uΔ , reduces the spatial velocity 

2u  on the right side and increases 2u  on the left side. 
According to the Bernoulli equation, the static pressure 

increases on the right side and decreases on the left side, 
so that a cross wind force, KW , occurs,  
acting to the cylinder.  
With alternative vortex shedding this force, KW , 

alternates, too. If the cylinder is flexible in the cross flow 
direction and if its natural frequency is near the vortex 
shedding frequency, the exciting force, KW , comes into 
resonance with cylinder vibration and this effect is called 
“vortex resonance”. A typical phenomenon of vortex 
resonance is the “locking-in effect”. The vortex shedding 
becomes synchronized with the vibration frequency at 
amplitudes of more than 2 or 3 % of the diameter, that 
means that the vortex shedding frequency ceases to 
follow the Strouhal law but is instead constant over a 
specific range of wind speed (Figure 2). The bandwidth 
of the resonance response of the structure is broadened; 
consequently the vibration becomes more stable and is 
less disturbed by wind velocity fluctuations. However, it 
is important to note, that even in the case of resonance, 
the amplitude always remains limited (Figure 2), which 
was for example shown experimentally in studies of 
oscillating cylinders [6], [7], [8], [9]. Vortex-induced 
vibrations are thus a response problem as opposed to 
flutter being a stability problem.  

 

 
 
Figure 1. The Principle of the Vortex Shedding at a   
                  Circular Cylinder [4] 
 

 

 
Figure 2. Locking-In Effect and Comparison Between 
                  Vortex and Mechanical Resonance, [4] 
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Vortex resonance occurs only within a limited range of 
wind speed. The band width of that range depends on the 
characteristic of the vortex resonance curve, which is 
influenced by the Reynolds number for circular cylinders. 
It is clear from the physical understanding of the 
separation process that viscosity and free stream velocity 
have an important influence and the can be described by 
the Reynolds number 

ν
du.Re = ,    [1] 

wherin u  - undisturbed mean flow velocity of the wind; 
d  - characteristic length, diameter or cross-wise 

dimension of the bluff body; 
ρ
μν =  - kinematic 

viscosity, depending on the temperature and pressure. 
The Reynolds number thus expresses the ratio between 
the inertia force and the friction force acting on the fluid. 
If, for example, the flow past a circular cylinder is 
studied, a great variety of changes in the nature of the 
flow occur with an increasing Reynolds number. 
Generally, the process of vortex shedding and its 
dependence on the Reynolds number is highly complex 
which makes analytical as well as numerical treatment 
very challenging as will be shown in more detail later. A 
comprehensive overview of the vortex shedding 
phenomenon and its different modes has been presented 
by Zdravkovich [10].  
Since vortex shedding exerts a fluctuating force on the 
body, which is of particular interest when the body can 
be  

excited to oscillations, Strouhal [1] defined a 
dimensionless shedding frequency, the Strouhal number, 
to characterize this process: 

u
fdS v

r
.

= ,   [2] 

where d  - diameter or cross-wise dimension of the body; 
vf  - vortex shedding frequency. 

According to Strouhal’s observations, subsequent 
investigations found the Strouhal number to be highly 
dependent upon the cross-sectional geometry of the body 
and accordingly focused on determining so called 
universal Strouhal numbers, which would be independent 
of the geometry. Figure 3 shows a compilation by Deniz 
and Staubli [11], which compares results obtained in 
investigations on the effect of body geometry on the 
vortex shedding process. The sudden jumps in the 
Strouhal number occurring at elongation ratios of 
approximately L/D=2–3 and L/D=4-7 mark the limits of 
the three flow regimes as illustrated due to the 
reattachment of the separated flow. The phenomenon 
vortex shedding was especially investigated for cylinders 
with a circular cross section, though other cross-sectional 
shapes will shed regular vortices, too. The vortex 
shedding on a circular cylinder is highly Reynolds 
number dependent. With an increasing Reynolds number 
in the transcritical range, the flow separation becomes 
more and more regular once again and the vortex street is 
reestablished. The exciting force increases respectively 
and this is the reason for dangerous vortex-excited 
vibrations. 

 
 
Figure 3. Classes of Vortex Formation Observed with Increasing Elongation of Different Prismatic Bodies,[3,11]: 

 Class I Leading-Edge Vortex Shedding; Class II Impinging Leading Edge Vortices; Class III Trailing-Edge 
  Vortex Shedding. 
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The Strouhal number for a circular cylinder is also 
strongly dependent on the Reynolds number (Figure 4). 
In a recent investigation of the vortex shedding process, 
Nakamura [13] carried out experiments to compare the 
different universal Strouhal numbers. He stressed the 
importance of an afterbody, the presence of which 
significantly alters the structure of the vortex formation 
region and seems to render Roshko's ([14], [15]) 
universal Strouhal number inapplicable.  

 
3. THE AIM OF THE INVESTIGATION 
 
The aim of this investigation is to propose a methodology 
for studying the vortex excited vibrations in an aerial 
ropeway with gondolas with stiff connection between the 
cabin and the hanger. The first step is to predict the 
frequency of the vortex aerodynamic forces and then to 
calculate the resulting oscillations of the cabins. It is only 
the beginning of research aiming to create a methodology 
for designing aerial ropeways whose characteristics 
enable avoiding such excitation. This is a serviceable 
problem, because the levels of vibrations need to be 
limited, not only to avoid dangerous levels, but as well as 
to ensure the safety and comfort of the passengers and to 
avoid fatigue problems in the long term. 
 
4. DYNAMIC MODEL OF THE STRUCTURE 
 
4.1. Dynamic model of the ropeway span 
 
The first step in establishing a dynamic model of a 
bicable ropeway is to analyze the working principle of 
the system ([16]). A bicable ropeway works with a 
certain number of cabins fixed to the haul cable by 
operationally releasable clamping devices, which can grip 
the haul cable at any point and therefore enable the 
setting of various sequential intervals between the 

individual gondolas. The speed of the gondolas through 
the stations decreases and thus enables easy entrance and 
exit of the passengers. Before exiting the station, the 
gondola is accelerated to the constant haul cable speed. 
Outside the station area the cables are led over line 
support structures, the track cable on saddles (track cable 
saddle), and the haul cable on support rollers. The drive 
for the haul cable is provided by the electric motor-driven 
sheave. 
It is assumed that the cross oscillation of the cabins and 
the movement of the cables in one span between two 
towers is not transmitted to the next span. Thus the 
numerical studies can be reduced to one span (Figure 5) 
of the track. In normal operation, the gondolas move 
along the span with constant velocity. The trajectory 
along the span follows the elastic line of the track cable, 
influenced by the horizontal tension force, the dead 
weight of the cable and the gondolas. It is also assumed 
that the elastic line of the track cable is constant and 
fixed in a vertical direction. That means the absence of 
vertical oscillation effects or swinging of the cabins in 
the x-z plane. 

 
Figure 4. Strouhal Number for Circular Cylinders versus Reynolds Number, [12] 
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Figure 5. Scheme of a Span of the Bicable Ropeway 
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4.2. Dynamic model of the gondola, [16] 
 
Every gondola is modeled as a mechanical system with 
two degrees of freedom—rotation angle φ and horizontal 
movement of the connection between the track cable and 
the gondola—yТ (Figure 6). Changes in the inclination 
angle of the track cable λ (Figure 5), cause changes in the 
vertical distance between both cables, and consequently 
in the inertia moment of the gondola towards axis xQ. The 
gondola’s oscillations in the vertical plane x-z are 
neglected and as a result it can be assumed that the 
relative movement of the gondola is in plane y-z. This 
movement is caused by the vortex, which acts on the 
cabin KW , dead weights of the gondolas, including 
passengers ( iG ) and the reactions of the cables. The 
elastic forces of the cables are modeled by springs with 
changing stiffness. They are the horizontal force between 
the track cable and the gondola (acting at point Q) and 
the force in the clamp (acting at point P). 
In accordance with the relation between gondola distance 
l to the distance between the towers L (Figure 5) a certain 
number of gondolas are moving in the span. In this 
mechanical system, all damping forces are very minor, 
therefore they are neglected. The differential equation for 
each gondola is as follows 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

2

1

f
f

yCB
BA

Ti

iϕ           [3] 

where: iϕ  – angle of rotation of gondola number i 
round axis xQ; 

Tiy - horizontal coordinate of the connection 
between the gondola number i and the track cable 
(point Q); 

A, B, C – coefficients, depending on mass and geometric 
characteristics of gondola, including passengers inside. 
Certain parts of the mass of the hauling cable and the 
mass of the track cable are added to the gondola number 
i. 
The generalized forces 1f  and 2f , including wind vortex 

KW  and the elastic forces from the cables, are time 
dependent as well as position dependent functions.  
Having in mind the nature of the vortex phenomenon, 
(Figure 1) the vortical exciter can be modeled like a 
harmonic force tfFWK ..2sin.max π= , where f  is the 
vortex frequency in Hz. This force acts crosswise on the 
rope span. Its maximum is 

cablat AucF ..
2

. 2
max

ρ
= ,     [4] 

where  ρ  - air density; 

cabA  - cross section area of the cabin; 

latc  - exciting force coefficient. It must be 
measured by model tests or full scale measurements. For 
circular cylinders it is a function of Reynolds number. 
The relation between the basic exciting force coefficient 

latc  versus the Reynolds number, according to Euro Code 
1, part 6 for circular cylinders is given in Figure 11 [12].  

 
5. NUMERICAL SIMULATION 
 
5.1. Numerical data of the studied ropeway span 
 
Later presented in the results of the simulation, the 
geometric data and specifications of a bicable ropeway, 
which has been in operation for five years, are used. The 
results are given for one span of the ropeway track. 
 

 
Figure 6. Mechanical Model of a Gondola with Stiff  

     Connected Cabin 

 
 
Figure 7. Drawing of the Gondola and the People Inside  
                It with All Dimensions 
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Some of the used parameters of the ropeway are provided 
in the Table 1. 
 
5.2. Numerical data of the gondolas (Figure 7) 
 
Some of the applied parameters and variables of the 
geometric characteristics of the gondolas are given in 
Table 2. 
Symbols and values of some other variables used for 
calculating the vortex excitation can be found in Table 3. 

 
5.3. Calculation of the frequency of the ropeway 
 
At first a harmonic analysis of the ropeway span is 
performed. The gondolas move along the span with 
constant velocity. The equation 

 
[ ]{ } [ ]{ } ( )tFuKuM =+      [5] 

 
for different frequencies of the excitation is solved. The 
value of the velocity of the gondolas varies between 1 
m/s to 6 m/s. The harmonic force is calculated according 
to the formula 
 

( )tfF ..2sin.10 π=    [6] 
 
where its maximal value is constant and is equal to 10N 
and f  is the exciting frequency. It varies between 0.1 Hz 
(period T= 10 s) to 0.6 Hz (T= 1.67 s). 
The two degrees of freedom iϕ  and Tiy  (where i  is the 
number of the gondola) of each gondola are obtained and 
a third important characteristic, the horizontal coordinate 
of the mass center of the cabin (Figure 6) 

iSKiSKiTiKi elayy ϕϕ cossin)( +++= , is calculated. The 
maximal amplitudes of these three parameters are found. 
It can be seen that the most dangerous velocity is v=2.0 
m/s, if velocity v=1.0m/s, which is a very untypical 
velocity for a ropeway, is excluded (Figure 8). The 
functions iϕ , Tiy  and Kiy  versus frequency are shown in 
Figure 9. It can be seen that the resonance frequency of 
the ropeway varies round 0.25 Hz (T=4s). As it was 
measured, the basic natural frequency of a similar 
gondola is about 0.25 Hz. Vortex oscillations of a 
gondola in ropeway span with similar characteristics, i.e. 

( )tii ϕϕ = , are measured for a velocity of 2.5 m/s 
([17],[18], [19]). 
 

Table 1. Parameters of the Ropeway 

 

Symbol Identification Values in the cited 
example Dimension 

Masses and force parameters 
 mass of all passengers in gondola i 80 kg/person [kg] 

 mass of the hauling cable, added to gondola number i calculated for each 
gondola [kg] 

 mass of the track cable, added to gondola number i calculated for each 
gondola [kg] 

 dead weight of the hauling cable 61.8 [N/m] 

 dead weight of the track cable 126.5 [N/m] 

 value of the horizontal projection of the force in the track cable, 
out of the span constant [N] 

 value of the horizontal projection of the force in the hauling 
cable, out of the span constant [N] 

 elastic force of the reaction of the track cable, due to its 
horizontal movement, acting over gondola number i. 

calculated at every 
integration step [N] 

 elastic force of the reaction of the hauling cable, due to its 
horizontal movement, acting over gondola number i. 

calculated at every 
integration step [N] 

Velocity parameters 

u  
velocity of motion of the hauling cable and the gondolas with 

passengers 
varies between 
1m/s to 6m/s [m/s] 

Geometric parameters 

L  horizontal distance between the towers (Figure 5) 800 [m] 
l  horizontal distance between every two gondolas. (Figure 5) 250 [m] 
H  vertical distance between the towers (Figure 5) 300 [m] 

λ  the inclination angle of the elastic line of the track cable, due to 
its dead weight (Figure 5) 

time and position 
dependent variable [rad] 
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Table 2. Geometric Characteristics of the Gondolas (Figure 7) 
 

Symbol Identification Values in the cited 
example Dimension 

Masses and force variables 
 mass of the carriage 500 [kg] 

 mass of the hanger 150 [kg] 
 mass of the cabin 600 [kg] 

KW  horizontal vortical exciter at the cabin 
( )tfFWK ..2sinmax π=   [N] 

Geometric variables 

SLSL le ,  coordinates of the mass center of the carriage in coordinate 
system QyQzQ (Figure 6 and Figure. 7)  [m, m] 

iSGSG ale +,  coordinates of the mass center of the hanger in coordinate 
system QyQzQ (Figure 6 and Figure 7)  [m, m] 

iSKSK ale +,  
coordinates of the mass center of the cabin in coordinate 
system QyQzQ (Figure 6 and Figure 7)  [m, m] 

iSPiSPi ale +,
 

coordinates of the mass center of the passengers in 
coordinate system QyQzQ (Figure 6 and Figure 7)  [m, m] 

iWKWK ale +,
 

coordinates of the acting point of the vortical exciter over the 
cabin KW  in coordinate system QyQzQ (Figure 6 and Figure 
7) 

 [m, m] 

ia  
vertical coordinate of the clamp (point P) of gondola number 
i, in coordinate system QyQzQ (Figure 6 and Figure 7)  [m] 

Li  mass inertia radius of the carriage  [m] 

Gi  mass inertia radius of the hanger  [m] 

Ki  mass inertia radius of the cabin  [m] 

Pii  mass inertia radius of all passengers in gondola i.  [m] 
 

Table 3. Other Variables Used for Calculating the Vortex Excitation 
 

Symbol Identification Values in the cited 
example Dimension 

d  cross-wise dimension of the cabin 2.30 [m] 
cabA  cross area of the cabin, exposed to wind exciting 5.83 [m2] 
ν  kinematic viscosity of the air 15.10-6 [m2/s] 
ρ  density of the air 1.25 [kg/m3] 
latc  exciting force coefficient dependable [-] 
f  frequency of the vortex 0.1÷0.6 [Hz] 
rS  Strouhal number 0.2  

 

 
 
Figure 8. Maxima of the Studied Parameters iϕ , Tiy  and Kiy  versus Velocity of  the Ropeway 
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5.4. Calculation of Reynolds number 
 

The Reynolds number is calculated according to formula 
(1). The undisturbed mean flow velocity of the wind u  
case is accepted to be equal to the speed of the ropeway 
and varies between 1m/s and 6m/s. The increasing step is 
0.25 m/s. 
Thus the Reynolds number varies between 1,53.105 and 
9,20.105. 
 
5.5. Calculation of the Strohal number. Establishing 
the dangerous vortex frequency 
 

It is hard to determine the exact value for the Strohal 
number. As can be seen in Figure 4, the Strohal number 
for circular cylinders varies strongly versus Reynolds 
numbers. For practical engineering purposes for circular 
cylinders, it is accepted that the Strouhal number is 
constant and 2.0=rS . 
The cabin in our simulation is almost a circular cylinder 
and according to graphical relation (Figure 4) the Strohal 
number is between 0.16 and 0.24. So we can calculate the 
frequency interval of vortex excitation as follows: 

   u
d
S

f r
v = .    [7] 

 

 

 
   a)      b) 
Figure 9. Maxima of the Studied Parameters iϕ , Tiy  and Kiy  

  a) Versus Frequency for Velocity Varying between m/s 6m/s 1 ÷  
  b) Versus Frequency for Some Velocities of the Ropeway 
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The obtained results are shown in Figure 10. The 
dangerous zone for the studied ropeway is between the 
two lines—the lower limit and the upper one. Depending 
on the velocity of the ropeway, the vortex-excited 
vibrations can occur if the natural frequency of the 
structure is inside the limited interval. For our ropeway, it 
varies between 0.18 Hz to 0.32 Hz (Figure 9a). The zone 
with high values of the studied parameters is quite broad 
due to the observed lock-in effect. It is obvious that the 
velocities for which Vortex excitation can occur are in 
the interval m/s 3.5m/s 2 ÷ .  Maximal amplitudes of two 
DoFs and of the horizontal coordinate of the mass center 

of the cabin for velocities and frequencies inside the 
vortex area (Figure 10) are shown in Figure 12. Usually 
the velocity of the ropeway is m/s 6  and the vortex 
frequency is between 0.4 Hz and 0.6 Hz. These values 
are high above the natural frequency and thus vortex 
effect for that velocity can not occur in the studied 
ropeway during its regular operation. So our 
investigations are more detailed and punctual in the 
previous zone—a velocity between m/s 3.5m/s 2 ÷  
(Figure 9b). 

 

 

 
5.6. Calculation of the amplitude of the vortex 
exciting force 
 
The maximal vortex exciting force maxF  is calculated 
according to (4), where the values of ρ  and cabA  are 
given in Table 3. At first, the value of coefficient latc  is 
taken from the graph in EC1, part 6 and after that similar 
calculations are done for values taken from the average 
experimental curve shown in Figure 11 and Figure 13. In 
Figure 14, the maxima for vortex excitation of the studied 

parameters ( iϕ and ity , ) versus velocity and for different 
curves of latc  are shown. 
 
5.7. Vortex excitation in the studied ropeway span 
depending on initial conditions 
 
Later on, some graphs of the studied parameters for a 
ropeway with passengers are presented. The vortical 
exciter is tfFWK ..2sin.max π= , where maxF =  
25.8750 N  and Hz 54.0=f  for graphs in Figure 15a.

 

 

 
 

Figure 11. Coefficient latc  versus Reynolds Number 
for Circular Cylinders, [12] 
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Figure 10. Zone of Vortex Frequency versus        
                 Velocity of the Movement 

 

Figure 12. Maxima of the Studied Parameters iϕ , Tiy  and Kiy   versus Velocity of the Ropeway, Varying in the   
                  Dangerous Vortex Area 
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Table 4. Non-zero Initial Values of the Second Cited Simulation 
 

Parameters for thicker gray line Parameters for narrow black line 

gondola № Initial values of DoFs 
sitting 
passen-
gers 

standing 
passen-
gers 

Initial values of DoFs 
sitting 
passen-
gers 

standing 
passen-
gers 

gondola № 1 m 20.0;1 11 =°= tyϕ  5 10 m 00.0;0 11 =°= tyϕ  5 10 
gondola № 2 m 30.0;2 22 −=°= tyϕ  8 7 m 00.0;0 22 =°= tyϕ  8 7 
gondola № 3 m 250.0;3 33 =°−= tyϕ  0 10 m 00.0;0 33 =°= tyϕ  0 10 
gondola № 4 m 500.0;5.0 44 =°= tyϕ  5 3 m 00.0;0 44 =°= tyϕ  5 3 
gondola № 5 m 20.0;1 55 =°−= tyϕ  1 8 m 00.0;0 55 =°= tyϕ  1 8 
gondola № 6 m 500.0;1 66 =°= tyϕ  0 1 m 00.0;0 66 =°= tyϕ  0 1 
gondola № 7 m 10.0;2 77 =°= tyϕ  2 9 m 00.0;0 77 =°= tyϕ  2 9 

 
 

 
a)        b) 

Figure 13. Coefficient latc  and Amplitudes of the Vortex Exciting Force   
    a) Coefficient latc  versus Velocity of the Ropeway 
    b) Amplitudes of the Vortex Exciting Force versus Velocity of the Ropeway 
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Figure 14. Maxima of the Parameters iϕ and ity ,  of the Ropeway for Vortex Excitation versus Velocity of the Ropeway 
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N 0044.11max =F  and Hz 52.0=f  for graphs in Figure 

15b. The frequency f  is chosen to be inside the interval 
of vortex frequency (Figure10) and the amplitude of the 
vortex force is calculated for coefficient latc , taken 
according to EC1. It is observed that for a ropeway with 
passengers, the influence of this coefficient is not so 
strong.  
 

 

The results, obtained by numerical simulations for latc  
calculated in accordance with EC1, and the measured 
values differ by no more than 10 %. The EC1 values are 
safer. In accordance with the legend in Figure 15, the 
initial conditions are set to zero (the thicker gray line) or 
have non-zero initial values (narrow black line) – Table 
4. 
 
 

 
 
6. CONLUSIONS 

 
The created methodology is suitable for studying the 
vortex excitation in aerial ropeways. 
It can be applied for exploring the vortex excitations in 
various elastic multibody systems. The suggested 
algorithm: 

• Calculation of the basic natural frequency of 
the elastic system; 

• Calculation of Reynolds number for the body 
cross section; 

• Calculation of Strohal number and 
establishment of the dangerous vortex frequency; 

• Calculation of the amplitude of the vortex 
exciting force; 

• Influence of initial conditions on the vortex 
excitation in the studied elastic system; 
marks the main stages of such a global investigation.  

The dynamic model of an aerial ropeway for studying its 
vortex dependence is created. It simulates the dynamic 
reactions of all bodies (the ropes and the gondolas) and 
visualizes their motion. The comparison between the 
final numerical results and the experimental data ([17], 
[18], [19]) shows good consistency. The numerical 
results are also compared to numerical models created 
before [16] and the tolerance is again satisfying. 
The created models are user-friendly and flexible, i.e. 
they allow easy changing of the system parameters. Thus 
they provoke their usage for scientific purposes as well as 
for engineering calculations. 
Thus, this investigation becomes a part of the efforts of 
scientists to reduce vortex excitation in aerial ropeways 
[20], and therefore to make them safer and more 
comfortable. 
 

 
 
 
 
 
 

a)     b) 
Figure 15.  Studied Parameters of the Gondola № 1 for Different Conditions versus Time 

a) Velocity of the Ropeway – 6 m/s 
b) Velocity of the Ropeway – 2.5 m/s 
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7. LIST OF SYMBOLS 
 
Reynolds number     Re, - 
undisturbed mean flow velocity of the wind  u , m/s 
kinematic viscosity    ν , m2/s 
Strouhal number     rS , - 
angle of rotation of gondola number i round axis xQ iϕ , rad 
horizontal coordinate of point Q   Tiy , m 
vortex frequency     f , Hz 
air density     ρ , kg/m3 
cross section area of the cabin   cabA , m2 
exciting force coefficient    latc , - 
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