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 The basic purpose of the present paper is to develop 

lengthwise fracture analyses of the functionally 

graded Symmetric Split Beam (SSB) configurations 

which exhibit non-linear mechanical behavior of 

the material. The SSB is loaded in pure bending. A 

lengthwise crack is located symmetrically with 

respect to the beam's mid-span. The crack is 

located arbitrary along the width of the beam's 

cross-section. Thus, the crack arms have different 

widths. The material is linearly and functionally 

graded along the height of the beam's cross-

section. The material non-linearity is treated by the 

Ramberg-Osgood equation (this is one of the basic 

novelties introduced in this paper). The fracture is 

analyzed in terms of the strain energy release rate 

by applying three approaches. First, the strain 

energy release rate is derived by considering the 

balance of the energy. The strain energy release 

rate is obtained also by using the complementary 

strain energy. The fracture is analyzed also by the 

J-integral. The results obtained by the three 

approaches are identical which proves the 

correctness of the lengthwise fracture analyses 

developed in the present paper. A parametric study 

is carried-out in order to examine the influences of 

the material gradient, the lengthwise crack 

location along the beam's width, and the non-linear 

mechanical behavior of the functionally graded 

material on the fracture in the SSB configuration. 
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1 Introduction  
 

Functionally graded materials play a vital role in 

many engineering applications in aerospace, nuclear 

reactors, power plants, electronics, optics and 
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biomedicine. The basic advantage of the functionally 

graded materials over the traditional structural 

materials is the fact that the functionally graded 

materials permit spatial tailoring of the composition 

of their constituent materials during manufacturing 
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[1-17]. In this way, one can obtain maximum benefits 

from the in-homogeneity of the functionally graded 

materials. For instance, the behavior of functionally 

graded structural members and components to 

externally applied loadings and influences can be 

optimized. 

The un-homogeneous character of the functionally 

graded materials makes the study of the mechanical 

response of the functionally graded structural 

members and components to the externally applied 

loading a challenging task [12-17]. An analytical 

approach for obtaining a solution for the stress state 

of a linear-elastic un-homogeneous cylinder with 

arbitrary varying material properties has been 

developed by applying a direct integration method 

[13]. It has been shown that the method allows for 

adequate modeling and analysis of mechanical 

behavior. An analytical solution for the stress state of 

a linear-elastic un-homogeneous rod subjected to 

external load which varies with axial coordinate has 

been derived [14]. It has been assumed that the 

material properties vary arbitrary in radial direction. 

The effect of the variable material properties on the 

stress distribution has been analyzed. The static 

buckling behavior of functionally graded shells has 

been studied assuming linear-elastic behavior of the 

material [16]. A new model of functionally graded 

thin-walled spherical shells loaded by external 

pressure has been applied to investigate the buckling 

problem [16]. 

One of the major concerns in the structural 

applications of functionally graded materials is their 

fracture behavior. Besides, the fracture analysis of 

functionally graded structures is more complicated in 

comparison to that of structures made of 

homogeneous materials. Recently, crack problems in 

functionally graded structures have received 

significant attention from research community 

around the world [18-20].  

Fracture behavior of functionally graded three-point 

bending beam configurations has been studied in 

[18]. For this purpose, methods of linear-elastic 

fracture mechanics have been applied. By using the 

compliance approach, an equivalent homogeneous 

beam of variable height has been suggested for 

cracked three-point bending functionally graded 

beams. It has been shown that the equivalent beam 

captures the compliance characteristics of 

functionally graded beams. It has been concluded that 

the equivalent compliance concept can be extended 

to analyze other cracked functionally graded 

components loaded by concentrated forces.  

Investigations of fracture behavior of functionally 

graded beams containing open edge cracks have been 

carried-out in [19]. It has been assumed that the 

material properties vary continuously along the 

height of the beam cross-section. The cracked 

sections of the beam have been modeled by using 

mass-less rotational springs. Continuity of the 

longitudinal and transverse displacements in the 

cracked sections has been assumed in the dynamic 

fracture analyses. Functionally graded beam 

configurations with clamped-free, hinged-hinged and 

clamped-clamped end supports have been 

investigated. Parametric studies have been conducted 

to show the effects of location and number of cracks 

on the flexural vibration and buckling behavior of 

linear-elastic functionally graded cracked beams.  

The analyses of delamination fracture behavior of 

functionally graded beams with taking into account 

the material non-linearity have been developed in 

[20]. 

A solution for the strain energy release rate has been 

derived. The solution has been applied to investigate 

the delamination fracture behavior of the double 

cantilever beam configuration which is made of a 

functionally graded non-linear elastic material. It has 

been assumed that the material is functionally graded 

along the beam height. The non-linear mechanical 

behavior of the material has been described by using 

a power-law stress-strain relation. 

This paper describes analyses of lengthwise fracture 

in functionally graded SSB configurations which 

exhibit non-linear mechanical behavior of the 

material. One of the most important novelties 

introduced in the present paper is the fact that the 

Ramberg - Osgood equation is used to deal with the 

non-linearity of the functionally graded material. 

Fracture is studied in terms of the strain energy 

release rate by considering the balance of energy. 

Influences of the material gradient along the beam 

height, the crack location along the beam width and 

the material non-linearity on the lengthwise fracture 

behavior are investigated. 

 

2 Lengthwise fracture analyses 
 

The present study is devoted to lengthwise fracture 

analyses of the functionally graded SSB 

configuration shown in Fig. 1. The beam has a 

rectangular cross-section of width, b , and height, h . 

The length of the beam is denoted by l2 . The 

external loading consists of two bending moments, 

M , applied at the free ends of the beam as shown in 
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Fig. 1. A notch of depth, 
2b , is introduced in the 

right-hand lateral surface of the beam in order to 

generate conditions for lengthwise fracture. It is 

assumed that a lengthwise crack of the length, a2 , is 

located symmetrically with respect to the beam mid-

span (it should be mentioned that one of the motives 

for the present study is the fact that functionally 

graded materials can be built up layer by layer [21], 

which is a premise for appearance of lengthwise 

cracks between layers [22, 23]). The lengthwise 

crack is located arbitrary along the width of the 

beam's cross-section (Fig.1). Thus, the two crack 

arms have different widths (the widths of the left-

hand and the right-hand crack arms are denoted by 
1b  

and 
2b , respectively). 

 

 
 

Figure 1. The geometry and loading of the functionally graded SSB configuration. 

 

The left-hand crack arm has the following 

boundaries: 3l a x l a    , 3 1/ 2 / 2b y b b     

and 3/ 2 / 2h z h   . The boundaries of the right-

hand crack arm are 3l a x l a    , 

1 3/ 2 / 2b b y b    and 3/ 2 / 2h z h   . The 

notch divides the right-hand crack arm in two 

symmetric segments of length, a , each. It is obvious 
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that the segments of the right-hand crack arm are free 

of stresses (Fig. 1). 

Due to the symmetry, only half of the beam, 

lxl 23  , is considered in the fracture analysis. 

The functionally graded beam under consideration 

exhibits material non-linearity which is described by 

the Ramberg-Osgood stress-strain relation [24] 

 

 

1

n

E H

 


 
   

 
 (1) 

 

where ε is the longitudinal strain, σ is the longitudinal 

normal stress, E is the modulus of elasticity. The 

material properties, H  and n , in the second term of 

the right-hand part of formula (1) describe the 

material non-linearity. 

It is assumed that the beam is made by a material 

which is functionally graded along the height of the 

beam cross-section.  The modulus of elasticity varies 

continuously along the height the beam cross-section 

according to the following linear law: 
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 3
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In (2), BE  and DE  are the values of the modulus of 

elasticity in the upper and lower surfaces of the beam, 

respectively. 

The centroidal axis, 3z , is shown in Fig. 1.  

The fracture behavior is analyzed in terms of the 

strain energy release rate, G . In order to derive the 

strain energy release rate, an increase of the crack 

length, a , is assumed leading to an increase,  , 

of the rotation of the end section of the beam. The 

balance of the energy is written as 

 

 
U

M a Gh a
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 (4) 

 

where U  is the strain energy cumulated in half of the 

beam. Form (4), one derives 

 

 
1

2
M U

G
h a h a

  
  

  
 (5) 

 

It should be noted that the expression in brackets in 

(5) is doubled in view of the symmetry (Fig. 1). 

Formula (5) is used in the present paper to obtain the 

strain energy release rate. It should also be mentioned 

that the present analysis is valid for non-linear elastic 

behavior of the material. However, the analysis holds 

also for elastic-plastic behavior if the beam under 

consideration undergoes active deformation, i.e. if 

the external loading increases only [25, 26]. Also, the 

present analysis is developed by assuming validity of 

the hypothesis for small strains.  

By applying methods of Mechanics of materials, the 

rotation of the end section of the beam is derived as 

 

  1 2a l a      (6) 

 

where 
1  and 2  are, respectively, the curvatures of 

the left-hand crack arm and the un-cracked beam 

portion, 3 2l a x l   , (Fig. 1).  

The curvature of the left-hand crack arm is 

determined in the following way. First, the equations 

for equilibrium of the elementary forces in the cross-

section of the left-hand crack arm are written as 
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where 1z  is the vertical centroidal axis of the cross-

sections of the left-hand crack arm (Fig. 2). 

In (8), 1N  and 
1yM  are the axial force and the 

bending moment in the left-hand crack arm, 

respectively. It is obvious that (Fig. 1) 

 

 1 0N  , MM y 
1

 (9) 

 

In order to determine 1  from equations (7) and (8), 

1z  has to be expressed first as a function of   by 

using the Ramberg - Osgood stress-strain relation (1). 

The distribution of longitudinal strains in the beam 

under consideration is analyzed by applying the 

Bernoulli’s hypothesis for plane sections since the 

beam has large span to height ratio. Concerning the 
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distribution of longitudinal strains, it should also be 

mentioned that since the beam is loaded in pure 

bending (Fig. 1), the only non-zero strain is the 

longitudinal strain,  . Thus, according to the small 

strain compatibility equations,   is distributed 

linearly along the height of the beam cross-section. 

Therefore,   is written as 

 

   111 1
 nzz   (10) 

 

where 
11nz  is the coordinate of the neutral axis      

(Fig. 2). It should be noted that the neutral axis, 

11 nn  , shifts from the centroid since the material is 

functionally graded along the height of the beam's 

cross-section (Fig. 2).  

The distribution of the modulus of elasticity along the 

height of the cross-section of the left-hand crack arm 

is expressed by (2). For thus purpose, 3z  is replaced 

with 1z  in (2). After substituting of (2) and (10) in 

(1), one obtains 
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By differentiating of (11) with respect to  , one 

arrives at 
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By substituting of (11) and (15) in (7) and (8) and 

integrating in boundaries from 
B  and 

D , where 

B  and 
D  are, respectively, the normal stresses in 

the upper and lower surfaces of the left-hand crack 

arm, one derives 
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Figure 2. The cross-section of the left-hand crack arm in the beam mid-span. 

 

where 
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By using (1), (2) and (10), the following relations 

between 
11nz , 1 , B  and D  are written: 
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Equations (16), (17), (19) and (20) should be solved 

with respect to 
11nz , 1 , B  and D  by using the 

MATLAB computer program. 

Equations (16), (17), (19) and (20) are used also to 

determine the neutral axis coordinate, 
22nz , the 

curvature, 2 , of the un-cracked beam portion and 

the normal stresses in the upper and lower surfaces of 

the un-cracked beam portion, 
u

B  and 
u

D . For this 

purpose, 
1

b , 
11nz , 1 , B  and D  are replaced with 

b , 
22nz , 2 , 

u

B  and 
u

D , respectively.  

Further, in order to derive the strain energy release 

rate by (5), the strain energy cumulated in half of the 

beam has to be determined. Since the two segments 

of the right-hand crack arm are free of stresses, the 

strain energy cumulated in half of the beam is written 

as 

 

 1 2U U U   (21) 

 

where 1U  and 2U  are the strain energies in the left-

hand crack arm and the un-cracked beam portion, 

respectively.  

1U  is obtained by integrating the strain energy 

density, 01u , in the left-hand crack arm 

 

 1 1 01 1

D

B

U ab u dz





   (22) 

 

where 1dz  is expressed as a function of   by (15). 
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In principle, the strain energy density is equal to the 

area, OPQ, enclosed by the stress-strain curve (Fig. 

3). 

 
 

Figure 3. Schematic of a non-linear stress-strain    

                curve (the strain energy and the  

                complementary strain energy densities are  

                denoted by 0u  and 
*

0u , respectively). 

 

For the Ramberg-Osgood stress-strain relation, the 

strain energy density is derived as [27] 
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By substituting of (2), (12) and (13) in (23), one 

arrives at 
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where 1z  is expressed as a function of   by (11).  

The strain energy in the un-cracked beam portion is 

written as 
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where the strain energy density, 02u , is obtained by 

(24). For this purpose, 1z , 
11nz  and 1  are replaced, 

respectively, with 2z , 
22nz  and 2  in (11), (14), (15), 

(24) and (25). Here, 
2z  and 

22nz  are, respectively, 

the vertical centroidal axis and the coordinate of the 

neutral axis of the cross-section of the un-cracked 

beam portion. Formula (15) is applied to express 
2dz  

in (25) as a function of  . For this purpose, 
11nz  and 

1  are replaced, respectively, with 
22nz  and 

2  in 

(14) and (15). 

By substituting of (22) and (25) in (5), one arrives at 
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The integration in (26) should be performed by the 

MATLAB computer program.  

In order to verify (26), the strain energy release rate 

is derived also by considering the beam 

complementary strain energy. For this purpose, the 

strain energy release rate is written as [27] 

 

 
*dU
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where 
*U  is the complementary strain energy 

cumulated in half of the beam, A  is the crack area. 

The elementary increase of the crack area is 

expressed as 

 

 dA hda  (28) 

 

where da  is an elementary increase of the crack 

length. 

Since the segments of the right-hand crack arm are 

free of stresses, the complementary strain energy 

cumulated in half of the beam is written as 
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strain energies in the left-hand crack arm and the un-

cracked beam portion, respectively.  

The complementary strain energy cumulated in the 

left-hand crack arm is written as 
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where 
*

01u  is the complementary strain energy density 

in the left-hand crack arm. In (30), 
1dz  is expressed 

as a function of   by (15).  

The complementary strain energy density is equal to 

the area, OQR, which supplements the area, OPQ, 

enclosed by the stress-strain curve, to a rectangle 

(Fig. 3).  Thus, 
*

01u  is expressed as 

 

 *
01 01u u   (31) 

 

By combining of (1), (2), (12), (13), (24) and (31), 

one arrives at 
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The complementary strain energy cumulated in the 

un-cracked beam portion is written as 
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where the complementary strain energy density, 
*

02u

in the un-cracked beam portion is found by (32). For 

this purpose, 1z , 
11nz  and 1  are replaced, 

respectively, with 2z , 
22nz  and 2  in (11), (14), (15), 

and (32). Also, formula (15) is applied to express 2dz  

in (33) as a function of  . For this purpose, 
11nz  and 

1  are replaced, respectively, with 
22nz  and 2  in 

(14) and (15).   

The expression obtained by substituting of (28), (29), 

(30) and (33) in (27) is doubled in view of the 

symmetry (Fig. 1) 
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Integration in (34) should be performed by the 

MATLAB computer program. It should be noted that 

the strain energy release rates derived by (34) 

matches exactly the strain energy release rates 

obtained by (26). This fact is a verification of the 

lengthwise fracture analysis of the functionally 

graded SSB configuration performed in the present 

paper.   

The solution for the strain energy release rate (26) is 

compared also with the J-integral approach [28]. The 

J-integral is solved along the integration contour,  , 

shown by a dashed line in Fig. 1. Obviously, the J-

integral has non-zero values only in segments, 
1  and 

2 , of the integration contour (
1  and 

2  coincide 

with the cross-section of the left-hand crack arm in 

the beam mid-span and the end section of the beam, 

respectively).  

The J-integral in segment, 
1 , of the integration 

contour is written as 

 

 
1 1

1

1 01 1 1
1 1

cos x y

u v
J u p p ds

x x




   
    

    
  (35) 

 

where 
1  is the angle between the outwards normal 

vector to the contour of integration and the crack 

direction, 
1xp  and 

1yp  are the components of the 

stress vector, u and v are the components of the 

displacement vector with respect to the coordinate 

system xy, and 
1ds  is a differential element along the 

contour of integration. 

The components of (35) are determined as 

 

 
1x

p    (36) 

 

 
1

0yp   (37) 

 

 1 1ds dy  (38) 

 

 1cos 1    (39) 

 

In (38), the coordinate, 1y , varies in the interval 

1 1[ / 2; / 2]b b . 

The partial derivative, 1/ xu  , in (35) is obtained by 

using the following formula from Mechanics of 

materials: 

 

 
1

u

x






 (40) 

 

By using (1), (2), (12) and (13), one obtains 
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1

1 2 1

n

z H

 


 

 
   

  
 (41) 

 

where 
1z  is expressed as a function of   by (11).   

 By substituting of (36), (37), (38), (39), (40) and (41) 

in (35), one derives 

 

 

1

2

1 1 01 1 1
1 2 1

n

n

n

J b u b
z

H

 

 

 
 

   
 

 

 (42) 

 

In (42), 01u  is obtained by (24) where 1z  is expressed 

as a function of   by (11).  

The J-integral in segment, 
2 , is written as 

 

 

2 22

02 2

2 2

2 2

cos

x y

u

J dsu v
p p

x x





 
 

          

  (43) 

 

The components of (43) are obtained as 

 

 
2xp   (44) 

 

 
2

0yp   (45) 

 

 2 2ds dy   (46) 

 

 1cos 1   (47) 

 

 

1

2 1 2 2

nu

x z H

 

 

  
   

   
 (48) 

 

The coordinate, 2y , varies in the interval 

[ / 2; / 2]b b . The coordinate, 2z , is expressed as 

function of   by (11). For this purpose, 
11nz  and 1  

are replaced, respectively, with 
22nz  and 2  in (11) 

and (14).   

By substituting of (44), (45), (46), (47) and (48) in 

(43), one derives 

 

 

1

2

2 02 1
1 2 2

n

n

n

J bu b
z

H

 

 

 
 

   
 

 

 (49) 

 

The average value of the J-integral along the front of 

the lengthwise crack is written as 

 

 1 1 2 2

1
u

D D

u
B B

J J dz J dz
h

 

 

 
  
 
 
   (50) 

 

By doubling (in view of the symmetry) of the 

expression obtained after substituting of (42) and 

(49) in (50), one arrives at 
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

 (51) 

 

where 
1dz  is expressed as a function of   by (15). 

Formula (15) is used also to express 2dz  as a function 

of  . For this purpose, 
11nz  and 1  are replaced, 

respectively, with 
22nz  and 2  in (14) and (15).  

Integration in (51) should be performed by the 

MATLAB computer program. It should be noted that 

the J-integral values obtained by (51) are exact match 

of the strain energy release rates calculated by (26), 

which also verifies the lengthwise fracture analysis 

developed in the present paper. 

 

3 Parametric studies  
 

Parametric studies of lengthwise fracture in the 

functionally graded SSB configuration (Fig.1) are 

carried-out in order to investigate the effects of 

material gradient, crack location along the beam 

width and material non-linearity on the fracture 
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behavior. Fracture is analyzed in terms of the strain 

energy release rate by applying formula (26).  

The calculated strain energy release rate is presented 

in non-dimensional form by using the formula 

 /N BG G E h . The location of the lengthwise 

crack along the beam width is characterized by bb /1
 

ratio. The 
BD EE /  ratio is used to characterize the 

material gradient along the beam height. The 

calculations are performed assuming that 012.0b  

m, 018.0h  m, 7.0n  and 25M  Nm. The 

strain energy release rate in non-dimensional form is 

presented as a function of BEH /  ratio at 

5.0/ BD EE  in Fig. 4 for three bb /1
 ratios. 

 

 
Figure 4. The strain energy release rate in non- 

                dimensional form plotted against BEH /   

                ratio at 1 / 0.25b b   (curve 1),  

               1 / 0.50b b   (curve 2) and 1 / 0.75b b    

                (curve 3). 

 

 One can observe in Fig. 4 that the strain energy 

release rate decreases with increasing of BEH /  

ratio. The curves in Fig. 4 show also that the strain 

energy release rate decreases when bb /1  ratio 

increases. This finding is attributed to the fact the 

stiffness of the left-hand crack arm increases with 

increasing of bb /1  ratio.  

 The influence of the material gradient along the 

beam height on the lengthwise fracture behavior is 

investigated too. For this purpose, the strain energy 

release rate in non-dimensional form is plotted 

against 
BD EE /  ratio at 4.1/ BEH  and 

1 / 0.75b b   in Fig. 5. It should be noted that 
BE  is 

kept constant in the calculations. Therefore, 
DE  is 

varied in order to obtain various 
BD EE /  ratios. It 

can be observed in Fig. 5 that the increase of 
BD EE /  

ratio leads to decrease of the strain energy release rate 

(the reason for this behavior is the increase of the 

beam stiffness with increasing of 
BD EE /  ratio).  

 

 
Figure 5. The strain energy release rate in non- 

                dimensional form plotted against BD EE /   

                ratio at non-linear (curve 1) and linear- 

                elastic (curve 2) behavior of the  

                functionally graded material. 

 

The effect of material non-linearity on the strain 

energy release rate is also evaluated. For this purpose, 

the strain energy release rate derived assuming 

linear-elastic behavior of the functionally graded 

beam is plotted also in Fig. 5 for comparison with the 

non-linear solution. It should be mentioned that the 

linear-elastic solution for the strain energy release 

rate is obtained by substituting of H  in 

formula (26), which follows from the fact at 

H , the Ramberg - Osgood stress-strain 

relation transforms into the Hooke’s law. The 

diagrams in Fig. 5 indicate that the material non-

linearity leads to increases of the strain energy release 

rate.  

 

4 Conclusions  
  

Lengthwise fracture in functionally graded SSB 

configurations which exhibit non-linear mechanical 
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behavior of the material is analyzed. The material 

non-linearity is described by applying the Ramberg-

Osgood stress-strain relation. The SSB 

configurations with a lengthwise crack located 

arbitrary along the beam width are investigated. 

Thus, the solution obtained can be used to evaluate 

the influence of crack location on the lengthwise 

fracture behavior. The material is functionally graded 

along the height of the beam cross-section (a linear 

law is applied in order to describe the continuous 

variation of the modulus of elasticity along the height 

of the beam cross-section). The fracture behavior is 

analyzed in terms of the strain energy release rate by 

considering the balance of energy. Comparisons with 

solution for the strain energy release rate obtained by 

using the beam complementary strain energy and 

with lengthwise fracture analysis by the J-integral 

approach are carried-out for verification. The effects 

of material gradient, crack location along the beam 

width and the material non-linearity on the 

lengthwise fracture behavior of the functionally 

graded SSB configuration are investigated. The most 

important findings from the lengthwise fracture 

analyses developed in the present paper can be 

summarized as follows: 

• The strain energy release rate decreases with 

increasing BEH /  ratio. 

• The increase of the width of the cross-section of the 

left-hand crack arm leads to decrease of the strain 

energy release rate. 

• The strain energy release rate decreases when 

BD EE /  ratio increases.  
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