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 In structural design optimization method, 

numerical techniques are increasingly used. In 

typical structural optimization problems there may 

be many locally minimum configurations. For that 

reason, the application of a global method, which 

may escape from the locally minimum points, 

remains essential. In this paper, a new hybrid 

simulated annealing algorithm for global 

optimization with constraints is proposed. We have 

developed a new algorithm called Adaptive 

Simulated Annealing Penalty Simultaneous 

Perturbation Stochastic Approximation algorithm 

(ASAPSPSA) that uses Adaptive Simulated 

Annealing algorithm (ASA); ASA is a series of 

modifications done to the traditional simulated 

annealing algorithm that gives the global solution 

of an objective function. In addition, the stochastic 

method Simultaneous Perturbation Stochastic 

Approximation (SPSA) for solving unconstrained 

optimization problems is used to refine the 

solution. We also propose Penalty SPSA (PSPSA) 

for solving constrained optimization problems. The 

constraints are handled using exterior point 

penalty functions. The hybridization of both 

techniques ASA and PSPSA provides a powerful 

hybrid heuristic optimization method; the proposed 

method is applicable to any problem where the 

topology of the structure is not fixed; it is simple 

and capable of handling problems subject to any 

number of nonlinear constraints. Extensive tests on 

the ASAPSPSA as a global optimization method 

are presented; its performance as a viable 

optimization method is demonstrated by applying it 

first to a series of benchmark functions with 2 - 50 

dimensions and then it is used in structural design 

to demonstrate its applicability and efficiency. 
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1 Introduction 

 
The domain of design engineering is in constant 

progress and the race toward an optimal solution 

continues in its good train. The increasing need for 

optimum structural designs with the most efficient 

use of material without violating constraints has 

given rise to several developments in the past three 

decades. A good deal of effort has been centered 

toward the search of optimal structural designs [1-

4]. In many of the previous studies, the authors have 

used local search algorithms. Such algorithms can 

only be successful if they are used to improve the 

current design if only a small segment of the 

boundary is allowed to move or if the objective 

function is convex. In fact, such assumptions do not 

hold, a design engineer working in the field of 

research and development has often to design 

completely new structures. The loading and support 

conditions of a particular design problem are 

usually known in advance, but the designer is not 

sure about what the final or optimal structure should 

look like. The essential goal of a designer in using 

an optimization algorithm is just to state the 

boundary conditions and let the algorithm perform 

some iterations without human intervention until it 

has automatically produced the best design. In this 

respect, the previous studies had only a relative 

success. Many of them relied too much on 

designer's intuition including the choice of initial 

design, or tight restrictions imposed on the 

movements of boundary. For these reasons, global 

optimization should take part in structural problems. 

In some of the previous studies, global search 

algorithms were used, but the accuracy remained 

questionable. Structural engineering and 

mathematical programming techniques should, both 

of them, collaborate in some way to develop a 

powerful and sophisticated programming system for 

structural optimization. This includes a robust 

optimization method coupled with modern tools of 

computer-aided design. 

This paper proposes a new hybrid simulated 

annealing algorithm for global optimization with 

constraints. Simulated Annealing (SA) has been 

developed rapidly since the past 20 years [5] as an 

effective and simple optimization technique, its 

superiority being in its good robustness and 

convenience to realize global optimization, whose 

conventional optimization techniques can seldom be 

attained. This algorithm, among few other 

heuristics, is suitable for complicated problems 

where global optimum is hidden among many local 

optima. The idea of the method is an analogy with 

the way the molten metal is cooled and annealed. 

For a slowly cooled process, this system is able to 

find the minimum energy state. Such slow cooling 

is essential for achieving a low energy state. 

Although simulated annealing is a global 

optimization method, it suffers from some 

disadvantages such as inaccuracy or slow 

convergence to the global minimum. In order to 

overcome these concerns, many modifications have 

been proposed, viz.: 

 

(a) a new stopping rule and  

 

(b) the application of a local search method. 

 

The present article focuses on the enhancement of 

simulated annealing algorithms by proposing the 

new hybrid method ASAPSPSA. The method was 

designed in order to find the absolute minimum of 

an objective function without being sensitive to the 

starting point, itis capable of handling problems 

subject to any number of design variables or 

equality/inequality constraints. The present method 

can help researchers and practitioners devise 

optimal solutions to countless real-world problems. 

Numerical results demonstrate the efficiency, 

accuracy and applicability of the suggested method 

for structural optimization.  

 

2 The basic simulated annealing 

 
The basic simulated annealing algorithm used in 

this paper is a simulated annealing (Fig. 1) based on 

the work of Van Laarhoven and Aarts [6], the 

algorithm is also well described by Sitarz [7]. A 

brief summary of the algorithm is given below for 

completeness. 

The following is a description of the periods of the 

algorithm in detail: 

 Initialization: Generate initial solution s 

and initial parameters. 

 

 Termination: The algorithm terminates 

when T reaches the value of the minimal 

temperature allowed. 



Engineering Review, Vol. 36, Issue 2, 149-155, 2016.  151 
______________________________________________________________________________________________________________________ 

 RAND (N(s)): Randomly choose a solution 

from N(s) where N(s) is the neighbourhood 

of s. 

 

 P (T; s; snew): P (T; s; snew) is the 

acceptance probability defined as:  

P (T; s; snew) = )./exp( TkE b  

where bk  is the Boltzmann constant. E  = 

E(snew) - E(s), is the amount of increase in 

the objective value caused by the uphill 

move and T is a parameter referred to as 

"annealing temperature". 

 

 Update T: Updating Temperature means 

cooling schedule. Tk temperature in the 

iteration k fulfils the following conditions: 

0lim0 


k
k

k TandT  

The cooling schedule may be classic [8, 11] 

,0

k

k TT  Logarithmic [9] 

 1) log(k /T  0 kT  and so on. Where    

is some constant such that 10   , 

usually in the range of 0.90 - 0.99. 0T  = 

0.01, 1, 100.  

 

 
 

Figure 1. The basic steps of simulated annealing. 

 

BSA Algorithm starts from an initial solution s at a 

high temperature T, and makes a series of moves 

according to RAND (N(s)). The change in the 

objective function values E  is computed at each 

move. If the new solution results in decreased 

objective function value, it is accepted with 

probability 1. If the new solution yields increased 

objective function value, it is accepted with 

probability P (T; s; snew). To avoid accepting large 

uphill move in the later stage of the search, the 

parameter T will be decreased over time by a 

schedule which is called "the cooling schedule". By 

accepting worse solutions with a certain probability, 

SA can avoid being trapped in a local optimum. 

There are two drawbacks for applying BSA 

Algorithm directly: one is its slow convergence; the 

other is its accuracy. To obtain faster convergence 

and to ensure that the region containing the optimal 

solution was found, we first accelerate and follow 

the new stopping rule and in the final stage, we 

apply PSPSA in the solution found by ASA to 

improve the final result. 

In this paper, a new ASA which is combined with 

PSPSA (local search) is proposed. From numerical 

experiments, ASAPSPSA shows its powerful ability 

of global optima searching and wide applicability. 

 

3 The new proposed approach 

 
Although the BSA method approaches the 

neighborhood of the global minimum, it has, 

however, a difficulty in obtaining some required 

accuracy; it seems judicious to modify the basic 

algorithm according to a new stopping rule, and 

then to finish the algorithm with a faster convergent 

method. According to this idea, we modify BSA 

method to obtain the ASAPSPSA method as 

follows: 

 

 
 

Figure 2. The basic steps of ASAPSPSA. 

 

Commonly, structural problems are constrained. For 

the reason that SPSA method involves penalizing 

constraints, a penalty method is used; the 

constrained problem is then converted into an 

unconstrained problem which allows us to design a 

new method for constrained optimization problems, 

called Penalty Simultaneous Perturbation Stochastic 

Approximation (PSPSA) method. 
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3.1 Penalty method 

 
Penalty method is a procedure for 

approximating constrained optimization problems 

by the unconstrained ones. The approximation is 

accomplished in the case of penalty methods by 

adding to the objective function a term that 

prescribes a high cost for violation of the 

constraints.  

Consider the problem 

 

)1(
:

,)(









SxtoSubject

IRxxfMinimize n

 

Where f  is a continuous function in 
nIR  and S  is 

a constraint set in
nIR . The idea of a penalty 

method is to replace problem (1) by an 

unconstrained problem of the form 

 

)()( xPxfMinimize           (2) 

 

where   is a positive constant and P  is a function 

in 
nIR  satisfying: 

(i)  P  is continuous 

(ii) 0)( xP for all 
nIRx   

(iii) 0)( xP if and only if Sx   

Supposing that  0)(:  xgxS , the problem (1) 

can be replaced by the unconstrained one as 

follows: 

 













nIRx

enoughlargeis

xgxfMinimize



 )()( 2

  (3) 

 

Supposing now that S is defined by a number of 

inequality constraints 

 

 pixgxS i ....,,.........2,1,0)(:   

 

A very useful penalty function in this case is 

 

2

1
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
p
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i xgxP       (4) 

 

For large , it is evident that the minimum point of 

problem (2) will be in a region where P is small. 

Thus, by increasing , it is expected that the 

corresponding solution points will approach the 

feasible region S and, as subject to being close, will 

minimize f. Ideally then, as  , the solution 

point of the penalty problem will converge to a 

solution of the unconstrained problem. More 

generally, providing that the subset S is defined as 

 


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then the problem (1) is equivalent to that of (2) with 

a penalty function of the form: 
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p
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3.2 SPSA method 

 

SPSA is based on a highly efficient and easily 

implemented simultaneous perturbation 

approximation to the gradient: this gradient 

approximation uses only two loss-function 

measurements, independent of the number of 

parameters being optimized. The following general 

algorithm of SPSA is based on the work of J. Spall 

[10-11]. 

 

 
 

Figure 3. The basic steps of SPSA. 
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4 Numerical results 

 
4.1 Benchmark test functions 

 

Several tests have been performed on some well-

known benchmark test functions; see Appendix, 

with known global optima in order to demonstrate 

the efficiency as well as the accuracy of the 

proposed method. Basic information about the 

benchmark functions are reported in Table 1, global 

optimization methods used for performance analysis 

are provided by Table 2 and computational results 

are summarized in Table 3 for each problem. 

 

Table 1. Basic information about 5 Benchmark 

functions 

 

 
 

Table 2. Global optimization methods used for 

performance analysis 

 

 
 

Table 3. Performance of ASASPSA on 5 test  

              functions. 

 

 
 

As shown in Table 3, the ASAPSPSA can converge 

fairly close to the global optimum (verified by the 

analytical solutions). We also notice that, when 

compared with other methods, ASAPSPSA 

demonstrate its accuracy in achieving the global 

solution. 

 

4.2 Optimal design of a triangular plate 

 

The problem considered is a hexagonal steel plate, 

using thickness T1 and fillet radius FIL as the 

optimization parameters (see Figure 4). This 

problem uses a 2-D model and takes advantage of 

symmetry. The loading is tensile pressure (traction) 

of 50 MPa at the three flat faces. The purpose of 

this optimization problem is to minimize the volume 

V of the triangular plate without exceeding the 

allowable stress von . The maximum stress 

anywhere in the triangular plate should not exceed 

150 MPa. The optimum set of design variables can 

be achieved by solving the following minimization 

problem: 
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
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

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155

4020

150:
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toSubject
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         (7) 

 

In order to solve problem 1, we have applied two 

schemes: 

 

Scheme 1: both Structural Analysis and 

Optimization were done by using commercial 

software FEA code ANSYS (using First-Order 

method). 

 

Scheme 2: Structural Analysis was performed in 

commercial software FEA code ANSYS but an 

external Optimization code is used (ASAPSPSA 

optimizer). 

 

4.3 Numerical results 

 

Calculations show that the results provided by 

ASAPSPSA are better than those provided by 

Scheme1 using First-Order method (see Table 4). 

 

Table 4. Scheme 1 vs. Scheme 2 
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4.4 Graphical results 

 

 
 

Figure 4. Triplate. 

 

 
 

Figure 5. The Graph of a Hexagonal plate with   

                initial solution. 

 

 
 

Figure 6. The Graph of the optimal hexagonal 

plate using ASAPSPSA. 

5 Conclusion 

 
In this paper a new global hybrid method 

ASAPSPSA has been proposed. The new algorithm 

can be widely applied to a class of global 

optimization problems for continuous functions 

with box constraints. The experimental results show 

that the present method has proved the robustness 

and high performance of its algorithm. We can see 

clearly from numerical and graphical results that the 

algorithm can yield the global optimum with high 

accuracy. 
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The Shekel function coefficients iij ca ,  are (Table 

5): 
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Table 5: Shekel function-four-dimensional 
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