
232 M. Šarić, J. Hivziefendić, J. Kevrić: New algorithm for distribution system… 
______________________________________________________________________________________________________________________ 
 

NEW ALGORITHM FOR DISTRIBUTION SYSTEM 
RECONSTRUCTION PLANNING BASED ON FUZZY 

INFERENCE AND MULTICRITERIA DECISION MAKING 
 

Mirza Šarić1* – Jasna Hivziefendić2 – Jasmin Kevrić2  

 
1Public Enterprise Elektroprivreda BiH, Distribution Company Mostar, Adema Buća 34, 88000 Mostar, Bosnia and 
Herzegovina 
2International Burch University, Francuske revolucije bb, 71000 Sarajevo 
 

ARTICLE INFO   Abstract: 

Article history: 
Received: 31.01.2017. 
Received in revised form: 12.06.2017. 
Accepted: 12.06.2017. 

 This paper presents a new algorithm for 
distribution system reconstruction planning based 
on Mamdani type fuzzy inference and Bellman-
Zadeh multi criteria decision making method. The 
proposed algorithm takes system attributes as 
inputs (number of customers served by renewed 
infrastructure, energy losses, power demand and 
cost of investment) and returns crisp output values 
which are used as planning criteria. The aim of 
this paper is to provide a logical decision making 
framework which can be used to model, evaluate, 
and rank projects according to required criteria. 
The proposed model is flexible and can be 
extended to include additional planning criteria. 
The proposed method is tested on a realistic 
distribution system to demonstrate its relevance. It 
is expected that this paper will make a contribution 
toward more effective management of power 
distribution network planning process and that it 
will be used by planning engineers in practical 
problems. 
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1 Introduction  
 

The power system is a fundamental, strategically 
important asset for every country. It is a very capital 
intensive system which requires substantial 
investments in order to maintain predetermined 
quality standards and meet future energy and 
capacity needs. The electrical power distribution 
system (EPDS) is important part of the power 
system. In Bosnia and Herzegovina, it is run as a 
regulated monopoly, but this trend is changing due 
to market liberalisation process. The cost of power 
distribution constitutes a significant portion of the 

overall cost [1]. Investments in EPDS can roughly 
be divided in two groups: investments in 
construction of new facilities and investments in the 
renewal of existing infrastructure. It is estimated 
that 30 - 40 % of total investments in the electricity 
sector is allocated to distribution systems [2]. 
This paper presents an algorithm for EPDS 
reconstruction planning, based on fuzzy inference 
and multi criteria decision making (MCDC). Fuzzy 
logic is introduced in order to account for a varying 
degree of uncertainty, imprecision and 
contradictions in a semi structured problem domain 
which requires a comprehensive model for 
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knowledge analysis [3]. The proposed model can be 
divided in two parts. The first one is based on 
Mamdani type fuzzy inference and is used to model 
planning criteria. It takes the system attributes as 
input variables in three separate inference systems 
and returns crisp output values which are used as 
planning criteria. The system attributes considered 
are the number of customers served by renewed 
infrastructure, energy losses, power demand and 
cost of investment. The second part of the model is 
used for MCDM in fuzzy environment, based on the 
Bellman-Zadeh method in which decision making is 
accomplished by the intersection of fuzzy goals and 
constraints. Elements of the decision matrix 
(reconstruction criteria) are the output variables of 
the fuzzy inference system. Bellman-Zadeh model 
has been proven as a suitable tool in similar 
applications [4]. The main objective of this work is 
to provide a logical and easy to follow decision 
making framework which can be used to model, 
identify and rank EPDS reconstruction projects 
according to their ability to deliver long term 
benefits to both customers and utility. The proposed 
algorithm is tested on a realistic medium voltage 
(10 kV) network in Bosnia and Herzegovina in 
order to prove its practical relevance. Finally, 
results are discusses and it was demonstrated that 
the proposed algorithm can be used as a powerful 
business intelligence tool and that it can contribute 
towards more efficient management of the power 
distribution network planning process. 
 
2 Literature review 
 
Distribution System Operators (DSO) makes long 
term investment plans using traditional tools such as 
load flow analysis [5]. The EPDS planning 
processes can be defined as preference based 
decision making process which requires inclusion 
and assessment of complex planning criteria [6]. 
Review of research problems and models related to 
the planning of the EPDS is provided in [1]. More 
recently, comprehensive review of modern EPDS 
planning issues has been provided in [7]. It includes 
an overview of modern models, methods and future 
research trends. It is complicated to capture all the 
necessary planning criteria and expert opinions 
within the formulations of conventional optimizing 
models [8]. The inclusion of expert opinion in the 
planning process is not straightforward and it 
requires the use of techniques designed for 

evaluation of qualitative aspects, vagueness or 
uncertainty [9] and multiple decision making 
criteria [5].  A probabilistic approach is difficult to 
apply to this problem because of the lack of 
significant data and because uncertainty is not 
random. In practice, it is not possible to model wide 
range of practical engineering problems using the 
exclusive domain of Aristotelian binary logics in 
which particular element x, either belongs to a set A 
(A=1) or it does not belong to a set A (A=0), 
because such a rigid approach to boundary 
definition between two sets reduces natural process 
to discrete ones [10]. Probabilistic and deterministic 
methods model coefficients as crisp values which is 
not realistic scenario [1] and might lead towards 
misallocation of resources. The fuzzy approach 
appears to be appropriate to address these issues 
because it provides a softer approach to membership 
and boundary conditions and because it provides 
significant information in a single fuzzy model. 
Deterministic models on the other hand require 
analysis of various numbers of scenarios in order to 
produce the same result. Fuzzy sets are generally 
regarded as an adequate tool for translation of 
qualitative information into quantitative [11]. Use 
of fuzzy logic allows operators to take advantage of 
system tolerance to imprecision deviations or 
violations which could lead to substantial savings 
[1], especially in capital intensive environments.  
Many authors highlight advantages of fuzzy models 
over the deterministic models for power system 
planning purposes [12]. Representation of 
uncertainty using probability and representation of 
its likelihood by objective or subjective probability 
is also questionable because this approach assumes 
repetition of events under unchanged conditions. 
Possibility and probabilistic approaches are 
different both from the point of view of the model 
and interpretation of results [9] while fuzzy 
approach offers different insight [13]. It is therefore 
justified to use new methods and tools, such as 
fuzzy systems, to create a logical framework, which 
will use realistic data to model EPDS planning 
criteria.  Some of the examples of fuzzy approach to 
EPDS and Distributed Generation (DG) planning 
and development applications are presented in [10], 
[14-20]. 
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3 Fuzzy sets, control and decision making 
 
Fuzzy logic provides a softer approach to 
membership concept as it recognizes the values of 
graded membership which can assume values 
between 0 and 1. Fuzzy set, therefore, can be 
described as an extension of classical set theory 
with softer transition from one membership function 
to another. If we consider a classical set A of the 
universe U, a fuzzy set A is defined by a set or 
ordered pairs, a binary relation as [21]: 
 

 }(x)μA(x))|xμ{(xΑ AA 1,0,,                       (1) 

 
The fuzzy logic models are particularly useful in 
applications which require the description of 
imprecise and complex processes. Such descriptions 
are performed with the use of fuzzy sets used in the 
process of fuzzy logic control, which deals with 
control problems in an environment of uncertainty 
and imprecision [21]. In the proposed fuzzy system, 
input and output linguistic variables are described 
by an expert knowledge and represented by sets A, 
B and O which contain single terms Ai, Bj i Ok [21]: 
 

 nii AAAAAA ,,,,,, 121  
 mjj BBBBBB ,,,,,, 121                          (2) 

 fkk OOOOOO ,,,,,, 121    

 
Terms Ai, Bj i Ok are fuzzy sets defined as [21]: 
 

   niUAxxxA iAii ,,1,)(, 1 

   mjUByyyB jBjj ,,1,)(, 2       (3)            

   fkUOzzzO kOkk ,,1,)(, 3   

 
Decision making in a fuzzy environment is a 
process in which goals or constraints, defined as 
fuzzy sets in the space of alternatives, are fuzzy in 
nature [22]. If we consider G described by the 
membership function G(x) to be a set of goals and C 
described by the membership function C(x) to be set 
of constraints, then the optimal decision is a fuzzy 
set D with membership function D(x), expressed as 
the intersection of fuzzy sets G and C [22], [23]. In 
order to make a decision, it is necessary to construct 
a decision making matrix M. Each column of the 
matrix represents a particular alternative and each 
row corresponds to a particular criteria. Each 

element of a decision making matrix M represents a 
ranking of an alternative Xi with respect to a criteria 
Cj.  In the case of m criteria (Cr1, Cr2,...,Crm) and n 
alternatives (X1, X2,...,Xn), decision matrix M can 
be represented as [23, 24]: 
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In order to obtain the matrix M, a number of goals 
Gg can be formed from the set of criteria Cj. The 
remaining criteria from the set Cj can be used to 
form the set of constraints. For set Gg, where r is the 
number of goals, it can be written that [23]:  
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Similarly, for fuzzy sets of constraints Cc, where h 
is the number of constraints, it can be written that 
[23]: 
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Decision set is given by the intersection of fuzzy 
goals and fuzzy constraints and can be represented 
as follows [23]: 
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where membership functions of D are defined as 
[23]: 
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which yields a fuzzy set of decisions [23]: 
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The optimal decision is an alternative X* with 
greatest membership function to set D [23]: 
  
           )(),...,(max*)( 11 nn XDXDXD             (16) 

 
           )~()...,~(max*)( 11 nDnDD xxx            (17) 

 

4 Algorithm development 
 

4.1 Fuzzy inference 
 
In this paper Mamdani-type model is used in order 
to obtain planning criteria, which are represented by 
a crisp, single valued quantities using realistic 
system attributes. The input variables are energy 
loss index (ELI), maximum power demand (P), 
number of customers (NC) and investment cost 
(IC). In the first model, criteria based on the ELI are 
evaluated according to diagram shown in Fig. 1(a). 
The output value of the model gives the first criteria 
Cr1, which represents the estimated benefits of an 
investment project based on energy loss reduction. 
In the second model, planning criteria Cr2 is 
obtained based on maximum power demand and the 
cost of investment as shown in Fig. 1(b). Further, 
the third model is determines planning criteria Cr3, 
based on the number of customers and cost of 
investment as shown in Fig. 1(c). Finally, all the 
system reconstruction criteria are assigned the equal 
factor of importance (w). All membership functions 
of the fuzzy sets are represented using triangular 
shapes, which is one of the most frequently used 

shapes [25]. 
 

      
 
Figure 1.  Mamdani model for assessment of 

criteria Cr1, Cr2 and Cr3 

 
4.2 Fuzzification 
 
1) Criteria based on ELI 
This is the first criteria which needs to be indirectly 
obtained from the given attribute, with the 
application of Mamdani type fuzzy logic based 
model. The final outcome is a crisp, single valued 
output. In this case, there are two inputs and one 
output variable described by fuzzy sets. The first 
input variable is based on the project capability to 
deliver energy loss reduction. Overall losses 
reduction is one of the most important technical, 
social and business objectives of the utility 
companies. The distribution network renewal 
projects are, in general, expected to reduce losses. 
There is a considerable difference in electrical 
energy losses around the world and it can be 
difficult to determine what a normal or acceptable 
rate is. The objective is not to give priority of 
reconstruction to the network sections with high 
losses, but rather to a particular project with 
greatest potential to reduce total energy losses. In 
[26], a method which can be used to compare load 
flow solutions for the original and reconstructed 
system is proposed in order to determine change of 
electrical energy losses for each alternative. The 
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obtained values are linearly normalized into a 0-1 
interval, where the highest loss reduction is 
associated with a value of 1 and the smallest 
associated with a value of 0. In [27], the Power Loss 
Index (PLI) fuzzification process is shown in which 
five membership functions are chosen to describe 
power reduction: Low (L), LowMedium (LM), 
Medium (M), MediumHigh (MH), and High (H). 
Such fuzzification method will be adopted in this 
paper in order to introduce ELI, which represents 
energy reduction measure of a project. It is 
calculated via sum of nominal power losses before 
and after reconstruction multiplied by their 
respective possibility of occurrence, derived from 
equal area criterion applied to load duration curve 
on a yearly level. The set of attribute values is 
defined as (0-amax+amin) interval. The obtained 
values are linearly normalized into (0-1) interval. 
Normalization is adopted because it ensures model 
flexibility. The energy loss index is represented as 
shown in Fig 2. by a fuzzy set ELI defined as:  

 
                      54321 ,,,, AAAAAELI                (18) 

                     HMHMLMLELI ,,,,              (19) 

 
The second input variable is the investment cost 
(IC). This attribute, obviously, plays a major role in 
any type of investment analysis. This variable is 
described with fuzzy set containing three 
membership functions: Low, Average, and High. 
Cost data are linearly normalized (0-1) range where 
the value of 1 is associated with amax+amin. All 
values are linearly normalized into (0-1) interval. It 
is used as the second input variable in all three 
Mamdani type models.  More specifically, the cost 
of investment is represented by a fuzzy set IC as 
follows: 
 
           321 ,, BBBIC                            (20) 

                HighAverageLowIC ,,                  (21) 

 
ELI is represented by the fuzzy set shown in Fig. 2 
while IC is represented by the fuzzy set shown in 
Fig.3. The output variable is represented by the 
specific fuzzy set which is graphically shown in Fig. 
2. (just like the set ELI). The crisp value of the 
output function is obtained after the defuzzification 
process is completed and it represents the criteria in 
the decision making matrix. The output variable is 
represented by set OUT (ELI) as follows: 

 54321 ,,,,)( OOOOOELIOUT          (22) 

         HMHMLMLELIOUT ,,,,)(           (23) 

 

 
 
 Figure 2.  ELI, P, NC and O fuzzy set 

 

 
 
Figure 3.  Investment cost (IC) fuzzy set  
 
2) Criteria based on maximum power demand 
Maximum line loading is important in profitability 
and other long term benefits estimation for two 
reasons. The first reason is that it prevents 
confusion between heavily loaded lines that serve 
few of customers and lightly loaded lines that serve 
large number of customers, as evaluating only the 
total number of customers served by a particular 
power line might be misleading. Maximum or peak 
demand is therefore introduced in reconstruction 
profitability assessment in order to account for the 
total amount of power required, which has 
significant revenue implications in the long run. The 
second reason is the deterioration process which 
causes irreversible alterations of conductor 
mechanical and electrical properties. This process 
occurs faster in heavily loaded conductors. 
Maximum active power demand data are linearly 
normalized into (0-1) range where the highest line 
loading is associated with a value of 1 which 
corresponds to peak demand of 5 MW. This value is 
chosen based on the customized conductor type in 
10 kV network whose maximum current rating is 
300 A. The smallest value is associated with a value 
of 0 and it corresponds to peak demand of 0 MW. 
This variable is combined with IC to give the 
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second criteria (Cr2) and is represented by a set P as 
follows:  
 

     54321 ,,,, AAAAAP                    (24) 

        HMHMLMLP ,,,,                  (25) 

                       321 ,, BBBIC                           (26) 

     HighAverageLowIC ,,                   (27) 

 54321 ,,,,)( OOOOOPOUT               (28) 

               HMHMLMLPOUT ,,,,)(              (29) 

 
3) Criteria based on number of customers 
The number of customers served by power line is 
important planning criteria. This attribute is 
described by the fuzzy set shown in Fig. 2 where the 
number of customers value is normalized into [0,1] 
interval, 1 being the maximum value, corresponding 
to 1000 customers and 0 being the minimum [28]. 
This attribute is combined with IC, in order to 
obtain the value of the criteria based on the number 
of customers (Cr3). Two input variables and one 
output variable are represented by fuzzy sets as 
follows: 
 

                   54321 ,,,, AAAAANC                   (30) 

                   H,MH,M,LM,LNC                    (31) 

                         321 B,B,BIC                          (32) 

                   high,average,lowIC                    (33) 

              54321 O,O,O,O,O)NC(OUT        (34) 

              H,MH,M,LM,L)NC(OUT             (35) 

 
4.3 Rule base 

 
Table 1 shows n×m IF…AND…THEN rules, where 
n and m are the numbers of elements of the input 
variable set, giving a total of identical 15 rules for 
each model.  
 
4.4 Defuzzification 
 
The last component of fuzzy system is 
defuzzification stage, sometimes also called 
decoding. The purpose of this stage is to produce a 
non-fuzzy control output which adequately 
represents the membership function μagg (z) [21]. 
There are numerous defuzzification methods and in 
this paper, a centre of gravity method is chosen as 
defuzzification method. Finally, Fig. 4 shows 
schematic representation of the proposed algorithm 

which is the final result of the algorithm 
development presented in this section.  
 
Table 1. Fuzzy rules used to determine the output 

of the fuzzy system 
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Figure 4. Schematic representation of the proposed 

algorithm 
 
5 Results, limitations and future work 
 
The proposed model, which is developed in 
previous section and graphically summarized in Fig. 
4 is applied to realistic medium voltage (10 kV) 
distribution network of Bosnia and Herzegovina. 
The test system represents a typical distribution 
system which consist of the main 110/35/10(20) kV 
source substation which distributes electrical energy 
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to the 35/10 kV zone substations via 35 kV feeders. 
It also delivers electrical energy to 10(20)/0,4 kV 
distribution transformers via the overhead and 
underground power distribution lines. The single 
line diagram (SLD), depicted in Fig. 5. which shows 
that the test system consists of eight 10(20) kV 
feeders. Let us assume that utility is required to 
provide a feeder reconstruction plan for this 
distribution area, which includes ranking and 

prioritization of reconstruction project alternatives. 
On the test system, each 10 (20) kV feeder represent 
a candidate project (alternative), giving a total of 
eight different alternatives. The values of attributes 
used to form planning criteria are shown in Table 2. 
Table 3 shows normalized values of attributes 
which are used as inputs to the fuzzy inference 
systems. 

 
Table 2. Planning alternatives 
 
Attribute Alternative 
 A1 A2 A3 A4 A5 A6 A7 A8 
a1 (MWh) 19 108 37 68 97 99 90 55 
a2 (MW) 1,6 3,8 0,44 2,1 2,8 1,5 2,2 0,9 
a3 (#) 350 800 410 200 680 109 338 505 
a4 (000€) 125 270 110 87 202 198 59 101 

 
Table 3. Input variables of the fuzzy inference system 
  

Attribute Alternative 
 A1 A2 A3 A4 A5 A6 A7 A8 

ELI 0,17 1 0,34 0,62 0,9 0,92 0,83 0,51 
P 0,4 0,95 0,11 0,52 0,7 0,38 0,55 0,23 

NC 0,35 0,8 0,41 0,2 0,68 0,11 0,34 0,51 
IC 0,46 1 0,4 0,32 0,75 0,73 0,22 0,37 

 
Fig 6. shows a surface view, which is a graphical 
representation of a function which maps input space 
to the output space of the proposed fuzzy systems 
and is used to determine planning criteria (output) 
for a given value of input variables.  
 

10(20) kV  
power lines

110/35/10(20) kV
Source transformer station

T

110 kV 
Transmission network

35 kV
Distribution network

Feeder 1 Feeder 2 ......... Feeder 8

LV  network 
(0,4 kV) 

10(20)/0,4 kV  
Transformers

 
 
Figure 5.  Single line diagram of the test system 
 

 
 
Figure 6.  Surface view-relationship between input 

and output variables of the Mamdani type 
inference 

 
The values shown in Table 4 are the output 
variables of fuzzy system for each of the eight 
alternatives and each pair of input variables (three 
planning criteria). When multiplied by relative 
importance factors, the output values of proposed 
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fuzzy system yield the elements of a decision 
making matrix M which is shown in Eq. 36. The 
computational procedure is carried out following 
these steps described in Fig. 4. Fig 7.  shows and 
example of the rule view where for inputs values of 

0,344 and 0,459 the output value of 0,32 is 
obtained. 
The maximum value of the membership function of 
the fuzzy decision set D can be found as follows:  
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Table 4. Output variables of the fuzzy inference system and their weight factors 
 

Criteria 
weight Alternative 

W µ1(x) µ2(x) µ3(x) µ4(x) µ5(x) µ6(x) µ7(x) µ8(x) 
Cr1 0,333 0,295 0,5 0,343 0,374 0,525 0,537 0,530 0,354 

Cr2 0,333 0,325  0,461 0,299 0,373 0,305 0,276 0,411 0,346 
Cr3 0,333 0,320   0,372   0,347 0,358 0,300  0,245 0,410 0,354 

 

 
 
Figure 7.  Rule view used to obtain crisp output 

value 

According to the obtained results, it can be 
concluded that A7 is the first alternative of choice, 
and it should be given the highest priority, based on 
the three criteria evaluated in the proposed model. 
Further analysis shows that it is now very simple to 
make project ranking based on the proposed 
methodology. In this example, projects are ranked 
according to their priority as follows: A7, A2, A4, 
A8, A5, A3, A1 and finally A6. One of the major 
advantages of the proposed system is that it enables 
the use of available data in order to design 
reconstruction criteria. Input variables (attributes) 
can be taken straight from the utility’s data base 
which enables fast processing and efficient use of 
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available data, which would otherwise not be used. 
Fuzzy inference based on expert opinion, enables a 
planning engineer to obtain some important insights 
into various system characteristics. This is 
important for practical planning purposes because it 
allows planner to make an informed decision 
regarding an investment plan and offer the decision 
makers the most efficient long term project 
execution schedules. The planning criteria included 
in this paper do not exhaust the list of all criteria 
required to perform planning tasks of the modern 
power distribution system. Modern planning 
framework needs to include a number of other 
factors such as environmental issues, distributed 
generation, asset management, reliability and 
quality of supply [5]. Such a holistic approach 
should result in design of a flexible, robust and 
relevant model which can include any planning 
criteria required by utility executives and it 
represents an important future research direction. 
One of the most important advantages of the models 
based on fuzzy inference and MCDM, compared to 
traditional optimization tools, is that the number of 
goals and constraints can be extended without the 
increase in computational cost and reduction of 
precision. Further, the obtained results indicate that 
fuzzy approach is capable to overcome weaknesses 
of the traditional planning tools such as intolerance 
to the imprecision and inclusion of qualitative 
criteria. Finally, this paper demonstrated that 
qualitative criteria, based on expert opinion, is an 
important part of the planning process and that it 
can be modelled and used as an important decision 
making criteria.   
 
6 Conclusion  
 
This paper presented an algorithm for the EPDS 
reconstruction planning based on fuzzy inference 
and MCDM. Fuzzy inference is based on Mamdani 
type model, while the decision making process is 
based on the Bellman-Zadeh method in which 
decision making is accomplished by the intersection 
of fuzzy sets of goals and constraints. It was shown 
that a fuzzy approach is capable to account for 
weaknesses and imprecisions of the traditional 
planning tools. The proposed model considered a 
set of system attributes as input variables in three 
separate inference models and returns crisp output 
values which are used as planning criteria. It was 
demonstrated that the proposed model provides a 

logical framework which can be used to evaluate 
and rank the EPDS reconstruction projects based on 
their ability to deliver long term benefits, both to 
utilities and customers. The list of criteria modelled 
in this paper is by no means exhausted. This system 
can be extended to include additional planning 
criteria specified by the decision makers, without 
significant increase in computational complexity. It 
expected that this paper will make a contribution 
toward more efficient reconstruction planning 
process and that it will be used by planning 
engineers in practical problems. 
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