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 In many industries, there is a growing need to 

produce products with strict tolerances of 

individual product characteristics. Increasing 

productivity and profitability are also sought, 

demanding the production of more products per 

unit time, and at a lower cost with the available 

production equipment and with minimal 

investment. A strong competition creates the need 

to improve production efficiency. One way of 

addressing the challenge of precise parts 

manufacturing is by analysing the capabilities of 

the production equipment. Assessing process 

capability using statistical modelling plays a key 

role in the business decision-making process in 

quality management. This paper presents a 

statistically based approach to capability analysis 

of a multi-spindle machining centre. 

Keywords:  

Capability analysis 

Multi spindle machining centre 

Statistical process control 

 

 

1 Introduction 
 

In modern industry, especially the automotive 

industry, there is a constant need for higher precision, 

environmental friendly production, a shorter cycle 

time, and lower production costs. The capability 

analysis is a proven concept that has been widely 

adopted to facilitate achieving high precision of 

manufactured products [1, 2]. It is a TQM tool 

described as a strategic management technique that 

plays a vital role in company operations 

management, aids in product design, setting 

acceptance norms, and process and operator 

selections in operations management [3]. Juran 

created a stronger link between process variability 

and customer specification [4]. If all the parts are 

processed with properties near target values and 

within the defined tolerances, the result will be a 100 

% usable product, thus saving time and money [5]. 

By designing and setting up a robust production 

system with a sufficiently reliable process, quality 
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controls to confirm that the product characteristics 

are within tolerance levels can be performed at less 

frequent intervals. Furthermore, capability analysis 

of manufacturing equipment visualizes the process 

ability to manufacture products to the required 

quality. 

The capability analysis provides information on the 

machine’s ability to produce a product with the 

desired characteristics. It is usually performed within 

a short time frame, primarily to exclude 

environmental and long period impacts on product 

characteristics, such as changes in temperature or tool 

wear [5]. It is primarily used during the pre-

acceptance or acceptance of a new machine, or 

following a major overhaul. Therefore, the 

corresponding capability index is an indicator of the 

machine’s ability to produce the product 

characteristics in accordance with the given 

requirements.  

Chen et al. noted that the capability index can be 

viewed as an effective and excellent means of 
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measuring product quality and performance [6]. 

Many engineering designers and shop floor 

controllers use capability indices as communication 

indicators to evaluate and improve the manufacturing 

process. 

 

2 Approach to machine capability analysis 
 

Machining accuracy depends on four characteristics: 

thermal effects, geometry and kinematics of the 

machine, static stiffness, and dynamic stiffness. 

Mostly, all mechanical characteristics are under the 

influence of a large number of variables that cause 

overall variability, since they change randomly, 

periodically, and systematically [5, 7]. Even when the 

influence of every known factor in the process is 

eliminated, or maximally reduced, the result will 

continue to change during the time interval [8, 9]. 

Methods of quality control and statistical forecasting, 

as a tool for machine capability analysis, play a key 

role in the decision-making process in quality 

management [10]. By monitoring variations in the 

production process, it is possible to predict the 

tendency of the process and to take preventive action 

necessary to maintain the required quality level of the 

process, and therefore the quality of products. Many 

factors influence the process and its outputs. 

Prediction and management of these impacts is a 

must in every production process aiming for high 

product quality [11]. The capability analysis can 

certainly serve as a good tool in achieving that goal. 

 

2.1 Multi-spindle machining centre 
 

The machining centre analysed in this paper is 

defined as a system of several physical modules 

interconnected by the workpiece: the machine 

modules, clamping device, cutting tools, and cutting 

process. Each module consists of several systems or 

components, and each of these modules has an 

interface to other modules through which they 

interact. The selected machining centre is a multi-

spindle centre that enables production of two or more 

products in one cycle. In addition to the selected 

machine, examples of this production concept can be 

seen in multiple spindle lathes, multi-cavity tools for 

injection moulding, etc.; i.e. in any process in which 

multiple products are produced simultaneously.  

In this configuration, there are factors (variables) 

specific to each spindle, and other factors that affect 

the process as a whole. The parts of each spindle will 

contain a variation (variation within a spindle) that 

will be different from the other spindles (variation 

between spindles). Processes with the multiple 

spindles represent a challenge in terms of quality 

assurance and, particularly, capability measurement. 

It is necessary to recognize and understand these 

variables and to ensure proper implementation of the 

machine capability analysis. 

 

2.2 The capability analysis for normally and non-

normally distributed data 
 

Process control implies the monitoring of process 

parameters in relation to their mean or nominal value. 

Deviations from the nominal value can be positive or 

negative, indicating that the process is under control 

when the measured value is within the control limits. 

The deviations could be successfully predicted by the 

methods of Statistical Process Control (SPC). 

Process capability, which is one of the SPC tools, is 

estimated by the process capability index. The 

capability analysis is based on the following 

assumptions: 

 the process under consideration is stable and with 

no significant causes of variation, 

 process data distribution is normal or can be 

approximated by a normal distribution, 

 reliable process capability estimation can be made 

only on the basis of the monitoring process by 

applying the appropriate control charts and after 

bringing the process to a state of statistical control. 

Numerous statisticians and quality engineers such as 

Chen et al. [6], Kane [12], Chan et al. [13], Choi and 

Owen [14], Boyles [15], Pearn et al. [16], Kotz and 

Johnson [17], Spring [18], Palmer and Tsui [19] - 

have examined process capability indices to propose 

more effective methods of evaluating process 

potential and performance. In respect to the period of 

time in which the sample for capability analysis is 

taken, the estimation of process capability may be 

classified as either short-term process capability or 

long-term process capability. 

Among several capability indices, the simplest is Cp, 

which gives information about the relationship 

between the sample distribution width and the given 

tolerances. The second index, Cpk, takes into account 

distribution position within the tolerance range. 

Wooluru et al. conducted the process capability 

analysis for a boring operation by understanding the 

concepts and methodologies and by making critical 

assumptions [20]. The Cpk usually represents short-

term capability while long-term capability is denoted 

by Ppk [21, 22]. Larsson [5] and also Pristavka and 

Bujna [10] noted that the machine capability analysis 

is performed for a short period of time and is 
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described with the indicators Cm and Cmk. In this case, 

it is recommended that the analysis be conducted on 

a sample of at least 30 products. To calculate machine 

capability indicators, the following formulas are 

used: 

 
𝐶𝑚 =

𝑇𝑔−𝑇𝑑

6𝑠
, (1) 

 

 
𝐶𝑚𝑘 = 𝑚𝑖𝑛 |

𝑇𝑔−𝑥̅

3𝑠
,
𝑥̅−𝑇𝑑

3𝑠
|, (2) 

 

where, Tg and Td represent the upper and lower 

specification limits respectively, 𝑥̅ represents the 

mean and s represents the standard deviation of the 

observed data set. In the automotive industry, it is 

generally a rule that a capable machine is a machine 

with a Cmk greater than 1.67. Processes with a Cmk 

value between 1.33 and 1.67 are only conditionally 

acceptable [10, 23, 24]. 

Doboviček et al. noted that data collected from the 

process can be normally or non-normally distributed 

[11]. In the case of normally distributed data, the 

calculation of capability indices is quite 

straightforward. When the process data are non-

normally distributed, it is necessary to transform the 

data or to calculate capability indices using best fit 

distribution (Poisson, Weibull, Binomial, Gamma 

Exponential, …) as a base. Initially, it is important to 

stress that there is no generally accepted calculation 

of a non-normal distribution index. Still, the most 

commonly used method is based on analogy with the 

normal distribution calculation. In that method, 99.73 

% of the interval, which corresponds to 6σ normal 

distribution, is compared to a tolerance interval of the 

observed characteristics. After determining that the 

selected distribution model provides the best process 

output value, the interval containing 99.73 % of the 

population is defined and contains the dispersion as 

in cases with a normal distribution [25]. The 

boundaries of this interval are the 0.135 percentile 

and 99.865 percentile of the distribution. This 

interval represents the probability of 99.73 % of total 

population. Calculation of machine capability index, 

Cmk, in that case is [22]: 

 
 

 
𝐶𝑚𝑘 = 𝑚𝑖𝑛 |

𝑇𝑔−𝑥̃

𝑥0.99865−𝑥̃
,

𝑥̃−𝑇𝑑

𝑥̃−𝑥0.00135
|, (3) 

 
where, xp represents boundary percentiles and 𝑥̃ 

represents the 50th percentile of the observed 

characteristics, i.e. the median. An alternative 

approach to calculating the capability index for the 

process that shows output parameters in a non-

normal distribution is transformation of the data set 

to a normal distribution, and then calculating the 

capability by the formula for the normal distribution. 

 

2.3 Capability analysis procedure 

 

The machine capability analysis is a formal 

procedure for assessing the ability of the machine to 

meet the given requirements [10, 26, 27, 28, 29].  

After selecting the functional dimension for the 

analysis to perform and verify the accuracy of the 

measuring equipment, the following steps are taken: 

assessment of process stability, assessment of 

whether the process is “under control”, calculation of 

capability indices, comparison of obtained index 

values with target values, deciding whether to alter 

machine parameters, reporting analysis results and 

proposing improvements, Fig. 1 [9]. 

In order to have valid process data for the analysis, it 

is necessary to ensure a capable measurement system. 

The measurement system analysis indicates whether 

the measuring system has a satisfactory resolution, 

and whether it is stable and able to control the 

product. The measurement used in the analysis was 

performed on the Hexagon 3D coordinate measuring 

machine (CMM). The measurement capability 

analysis showed that the total variation of the 

measuring system was 7 %. Total variation of the 

measuring system of less than 10 % is considered 

capable. The next step was to examine whether the 

process exhibited only inherent variation, i.e. 

whether it is under control. This is performed by 

using the appropriate control chart, in this case the 

𝑥̅𝑅 control chart. 
 

3 Basic process characteristics 
 

3.1 Characteristics of tested workpiece 
 

The capability analysis was performed on an 

aluminium engine part (workpiece) produced on a 

multi-spindle machining centre. The selected engine 

part is a high-pressure pump support, as shown on 

Fig. 2. The analysis examined a sample of 30 + 30 

workpieces. On each workpiece, twelve functional 

dimensions, marked D1 to D12, Table 1, were 

measured. The obtained results were statistically 

analysed using the Minitab software. 

The capability analysis is one of the deciding factors 

in the selection and purchase of production 

equipment. The selected equipment has to provide 

evidence that it is capable of producing products of 

the required quality.  
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The machine or equipment is accepted when each 

defined product functional dimension is in 

accordance with the required capability index value. 

If the capability index value does not meet a required 

value, corrective actions must be taken. 
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Figure 1. Machine capability analysis flowchart [9]. 
 

   
 
 

 

 

 

 

Figure 2. The defined dimensions and tolerances of support for high pressure pump.  
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Table 1. Critical dimensions of support for high pressure pump sample 

 

No. Characteristic Tolerances [mm] 

D1 The distance between the two surfaces for fixing on the engine block 73±0.1 

D2, D3 Diameter of two holes for fixing on the engine block 2 x Ø10H8 (+0.022/0) 

D4 Spacing two holes Ø10H8 - x axis 13.5±0.1 

D5 Spacing two holes Ø10H8 - y axis 78.3±0.1 

D6 Bore diameter for receiving and centering the high pressure pump Ø50H7 (+0.025/0) 

D7 The distance between the central hole Ø10H8 and Ø50H7 - x axis 107.8±0.1 

D8 The distance between the central hole Ø10H8 and Ø50H7 - y axis 14.5±0.1 

D9 Perpendicularity contact surface of the pumps on base P  
D10 Parallelism contact surface of the pumps on base P2  
D11 Perpendicularity centering surface of the pumps on base B  

D12 Parallelism centering surface of the pumps on base P, P1  

 
 

3.2 Features of selected machining system 
 

For the capability analysis, the Elha FM3+X multi 

spindle machining centre was selected, Fig. 3. The 

selected machining centre has the following 

characteristics: 

 double spindle machine with two tools engaged 

simultaneously (expandable to four engaged 

spindles) and with two workpieces in the clamping 

device, Fig. 4, 

 the machining concept is defined by moving the 

clamping device with the pieces while the spindle 

is fixed, 

 spacing between spindles is 240 mm, the spindle is 

powered by electric motors, 

 the machine is suitable for cast product processing 

that requires up to 14 operations (different tools), 

 suitable for handling products with dimensions to 

200x180x80 mm, 

 technical characteristics: clamping device path x-y-

z 400x1000x500 mm, device speed 40 m/min, 

acceleration 6 m/s2, spindle speed max. 20,000 min-

1 (for the product in question, from 9,000 – 12,000 

min-1), spindle torque 200 Nm, used control 

Sinumerik 840D. 

All stages of processing are performed in the single 

clamping of the clamping device. The raw material is 

cast aluminium produced through the process of 

pressure casting from a two-cavity casting tool. 

Support and clamping are performed in three points. 

 

 

 

Figure 3. Picture and draft of Elha FM3 + X machine. 
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Figure 4. The working space of the machine and the position of the workpiece in the machine. 

 
 

4 The capability analysis of the multi-

spindle machining centre for the selected 

product 

 
The capability analysis of the Elha FM3+X multi-

spindle machining centre was performed for the 

selected product, a high-pressure pump support. In 

order to obtain a representative sample, products 

were taken randomly from the production process, 

without sorting. The parts produced in both nests of 

the double-nest casting tool were equally represented 

in the sample. Machining was performed under 

optimal production conditions, and the workpieces 

were taken from the process in the order they were 

produced and were then numbered. All workpieces 

were measured on a dedicated CMM. 

As stated above, capability analysis is supported by 

Minitab statistical software. The software is used for 

checking the “under control” state of the observed 

process/data, testing the normality of the data 

hypothesis and process capability calculation. The 

result of the analysis for one of selected critical 

dimensions of the product, i.e. spacing between two 

holes Ø10H8 on the x axis, as denoted by D4, is 

shown on Fig. 5. 

 
 

Figure 5. Report on the machine capabilities for the selected dimension (D4). 

 

The performed capability analyses take into account 

the fact that data were collected in a short time period, 

hence in this case, there is no long-time variation. 

Therefore, the values of Cpk and Ppk are expected to 

be the same. However, a difference was found 

between those two values (Cpk = 1.71 and Ppk = 1.85), 
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due likely to the calculation procedure, i.e. Cpk is 

calculated by estimating the standard deviation using 

the deviation range value (moving range equation), 

rather than the standard deviation. Meanwhile, Ppk is 

calculated by the total standard deviation (overall).  

The results of the machine capability analysis 

performed for all observed dimensions are shown in 

Table 2. The Cmk values, for most of the observed 

dimensions, were higher than the default value of 

1.67. Two functional dimensions, D1 (distance 

73±0.1) and D10 (parallelism, a maximum of 0.15 to 

the base P2), did not meet the threshold value of 

Cmk=1.67. The described procedure is commonly 

used approach to capability analysis. This process 

assumes that all the collected data are normally 

distributed and the corresponding relationships are 

used in the capability calculation. By checking the 

normality assumption of all collected data sets (D1 to 

D12), it can be seen that some of collected data are 

not normally distributed, hence the calculated 

capability index values are incorrect. 

 

Table 2. Results of the capability analysis for the 

observed dimensions 
 

No. Tolerances (mm) 
Calculation Cmk 

for sample 

D1 73±0,1 0.97 

D2, D3 
2 x Ø10H8 

(+0.022/0) 
1.68; 1.95 

D4 13.5±0.1 1.71 

D5 78.3±0.1 1.86 

D6 
Ø50H7 

(+0.025/0) 
1.73 

D7 107.8±0.1 1.84 

D8 14.5±0.1 1.82 

D9  3.70 

D10  0.29 

D11  2.94 

D12  1.72 
 

In general, boundary dimensions, such as parallelism 

(D10) and perpendicularity (D9), are not normally 

distributed and a different approach is required for 

the capability analysis. Furthermore, the analysis of 

the capability index value for dimension D1 (distance 

73±0.1), which is normally distributed, Fig. 6, shows 

an unsatisfactory low value of Cmk=0.97, Fig. 7. To 

find sources of high data variability, which may have 

resulted in the low capability index value, the data set 

for dimension D1 was divided into two sets, one for 

each casting tool nest. 
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Figure 6. The normality of distribution. 
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Figure 7. Distribution of dimensions 73±0.1. 

 
The resulting capability indices, CmkA = 1.03 and CmkB 

= 0.91, were still low, Fig. 8 and 9. 

The increased standard deviation that appeared on 

both casting tool nests, may be attributed to special 

causes, such as the variability of castings. The casting 

production is performed by a process of pressure 

casting in a metal (casting) tool consisting of two 

cavities (casting nests) and moving parts which 

together form the shape of the product, other tool 

parts for ensuring the proper functioning of the 

casting process (vents, cooling and heating systems, 

etc.).  

Dimensional accuracy of casting is ensured by the 

precision of the casting tool parts and correctly 

implemented cooling and heating systems. Any 

variations in these parameters can result in 

unacceptable variation in the casting dimensions and, 

consequently, in unacceptable capability index 

values. Finding the source of variation of dimension 

D1 would require more extensive analysis with 
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known traceability of workpieces through the 

manufacturing process. 

 

 
 

Figure 8. Distribution for nest A (Dimension D1). 

 

 
 

Figure 9. Distribution for nest B (Dimension D1). 

 

By analysing dimension D9 (perpendicularity to the 

base P) it is found that the data are non-normally 

distributed. The p-value, probability associated with 

normality hypothesis testing, equal to or greater than 

0.05 shows that the data are normally distributed with 

95 % confidence, Fig. 10.  
 

 
 

Figure 10. Goodness of Fit Test for the dimension 

D9, "perpendicular to the base P", 

results from software Minitab. 

In the case of the perpendicularity, it is expected that 

the data will not be normally distributed, which is 

confirmed by a normality test. Since the p-value for 

the normal distribution is less than 0.05 (p = 0.017) 

an approximation is required. By identification of 

individual distributions, it was determined that the 

measured data are best approximated by a non-

normal 3-Parameter Weibull distribution, which is, in 

this case, base for the machine capability index 

calculation. Using the 3-Parameter Weibull 

distribution as the base distribution for the capability 

index calculation for dimension D9, the value of Cmk 

= 3.70 was obtained, and it can be concluded that the 

quality requirements for dimension D9 were met and 

no further analysis is required, Fig. 11. 
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Figure 11. Approximation of non-normal 

distribution of the dimension 

"perpendicular to the base P maximum 

0.2". 

 

For dimension D10 (parallelism, maximum 0.15 to 

the base P2), the measured data were non-normally 

distributed and it was found that the 2-parameter 

exponential distribution (p = 0.016) can be used for 

approximation, Fig. 12. For this characteristic, there 

is an evident presence of a special cause in the 

process, called the “double hump” effect (camel-

hump). The analysis per nests, for given data set, are 

shown on Fig. 13 and 14. An increase in the standard 

deviation appeared for both nests, and each nest 

presented a specific pattern, characterized by a 

double hump. As the further analysis is necessary, the 

sampling of the aforementioned two dimensions, D1 

(distance 73±0.1) and D10 (parallelism, maximum 

0.15 to the base P2), was repeated prior to machine 

adjustments. Sampling was conducted by sorting 

casts according to the casting tool nests. First, all the 

castings from the nest A were analysed and 

measured, followed by castings from the nest B. In 
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the repeated measurement, for the second sample of 

dimension D1 (distance 73±0.1), it cannot be 

concluded that the sample data are normally 

distributed, Fig. 15. 
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Figure 12. Analysis of the distribution of the 

dimension "parallelism, maximum 0.15 

to the base P2”. 

 

 
 

Figure 13. Distribution for nest A (Dimension D10). 
 

 
 

Figure 14. Distribution for nest B (Dimension D10). 

Although the capability index value for dimension 

D1 is acceptable, from the Fig. 16 it can be seen that 

two groups of data can be distinguished, which is also 

confirmed by Multi-vary analysis, Fig. 17. 
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Figure 15. The probability plot of dimension D1. 
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Figure 16. Distribution of dimensions D1, 73±0,1. 

 

 
 
Figure 17. Difference in sample means of data 

obtained from two casting tool nests (A 

and B). 
 

It can be concluded that the expected normal 

distribution of dimension D1 in the sample data is not 

achieved due to the existence of two subgroups of 

data within the samples, and the data that can be 
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indices calculated for each nest separately show 

satisfactory values, Fig. 18 and 19. 
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Figure 18. Process capability, dimension D1, nest 
A. 
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Figure 19. Process capability, dimension D1, nest 
B. 

 

By analysing dimension D10 (parallelism, max 0.15 

on base P2), the data were found to be non-normally 

distributed. The data fit test was performed and 3-

Parameter Weibull distribution selected as the best fit 

distribution for the observed data set, Fig. 20. 

The performed data fitness analysis shows that the 3-

parameter Weibull distribution can be used in further 

process capability calculation (p-value = 0.482). The 

results are shown in Fig. 21. The overall process 

capability achieved value of Cmk = 1.79 satisfies the 

requirements for the confirmation of machine 

capability. 

The process capability analysis for the data selected 

by casting tool nest also shows satisfactory results, 

although the variance of the measurement form the 

nest B was slightly higher than the variance for the 

nest A, Fig. 22 and 23. 
 

 
 

Figure 20. Results of fit test for dimension D10. 
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Figure 21. Process capability for dimension D10 

using Weibull distribution model. 
 

0,180,150,120,090,060,030,00

LB; Target USL

LB 0

Target 0

USL 0,2

Sample Mean 0,0433667

Sample N 30

Shape 1,79284

Scale 0,0429827

Threshold 0,00509196

Process Data

Pp *

PPL *

PPU 1,81

Ppk 1,81

O v erall C apability

PPM < LB 0,00

PPM > USL 0,00

PPM Total 0,00

O bserv ed Performance

PPM < LB *

PPM > USL 0,30

PPM Total 0,30

Exp. O v erall Performance

Process Capability of 0,15 P2 Nest A_1
Calculations Based on Weibull Distribution Model

 
 

Figure 22. Process capability for dimension D10 

nest A. 
 

Table 3 shows the results of the initial capability 

analysis for dimensions D1 and D10, performed 

without data selection based on the casting tool nest, 

and modified capability analysis that involves data 

stratification and calculation based on non-normal 

distribution models. 
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Figure 23. Process capability for dimension D10 

nest B. 
 

Table 3. Capability index for dimension D1 and 

D10 after first and second sampling 
 

No. 
Tolerances 

[mm] 

Calculation 

Cmk for 

sample 1 

Calculation 

Cmk for 

sample 1 for 

nest A i B 

D1 73±0.1 0.97 1.94; 1.70 

D10  0.29 1.81; 1.78 

 

The final conclusion is that the overall process 

capability of the multi spindle machining centre Elha 

FM3+X for the given products is acceptable (Cmk 

value greater than 1.67), therefore the machine is 

suitable for the use in the production process. 
 

5 Conclusion 
 

The process capability index is the important 

parameter in assessing the state of the quality and 

readiness of the production equipment in order to 

meet requirements. Determination of capability index 

represents the final test at the assessment of quality 

or purchase of the production equipment and at the 

restart of equipment after servicing or a prolonged 

delay. Although, basically, the analysis of the 

production equipment capabilities itself may be a 

simple procedure, in the case of sophisticated 

equipment, such as a multi-spindle machining center, 

determining of the capability can be complex 

procedure.  

This study provides a practical example of 

determining the capability index of a multi-spindle 

machining centers used for the production of 

aluminum parts in the automotive industry. Due to 

the configuration of the multi-spindle machining 

centre, the variations are specific to each spindle and 

it is necessary to recognize, understand and ensure 

proper implementation of the capability analysis of 

the machine.  

For the observed machining centre, the quality 

features of products (dimensions) are mainly 

normally distributed. Still, there are some product 

dimensions that cannot be modelled by normal 

distribution and, as such, need to be taken into 

account during the process capability analysis. 

Initially, the capability analysis is done on taken 

sample. Based on the obtained results, necessary 

corrections in the process are performed. The final 

analysis, on second sample, confirmed that the 

equipment met the criteria of acceptance with 

capability index of Cmk = 1.67. 

In this  paper, the method of determining the 

capability of non-normally distributed product 

dimensions is discussed in particular. Current 

practice shows that the approach to capability 

analysis of such dimensions is not appropriate. Often, 

the reason for this is the complexity of the calculation 

within production conditions. Therefore, this paper 

presents a practical and applicable scientifically 

based approach to  determining the process capability 

for complex modern production equipment. 
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