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 The maximal covering location problem maximizes 

the total number of demands served within a 

maximal service distance given a fixed number of 

facilities or budget constraints. Most research 

papers have considered this maximal covering 

location problem in only one period of time. In a 

dynamic version of maximal covering location 

problems, finding an optimal location of P 

facilities in T periods is the main concern. In this 

paper, by considering the constraints on the 

minimum or maximum number of facilities in each 

period and imposing the capacity constraint, a 

dynamic maximal covering location problem is 

developed and two related models (A, B) are 

proposed. Thirty sample problems are generated 

randomly for testing each model. In addition, 

Lingo 8.0 is used to find exact solutions, and 

heuristic and meta-heuristic approaches, such as 

hill climbing and genetic algorithms, are employed 

to solve the proposed models. Lingo is able to 

determine the solution in a reasonable time only for 

small-size problems. In both models, hill climbing 

has a good ability to find the objective bound. In 

model A, the genetic algorithm is superior to hill 

climbing in terms of computational time. In model 

B, compared to the genetic algorithm, hill climbing 

achieves better results in a shorter time.  
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1 Introduction  
 

Location problems with covering objectives are one 

of the main types of facility location problems [1]. 

Network covering problems have a rich history [2]. 

Revelle et al. [3] have provided a comprehensive 

bibliography of recent papers in median, center and 
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covering models as three important types of facility 

location problem. In covering problems, if the 

distance between the demand point and the facility is 

less than a threshold, the demand can be served by 

that facility [4]. This threshold is called the covering 

radius. The three main assumptions of covering 

problems are all-or-nothing coverage, individual 
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coverage and fixed coverage radius. With relaxation 

of these assumptions, the gradual covering model [5], 

cooperative covering model [6] and variable radius 

model [7] are proposed respectively [8]. The 

maximal covering location problem (MCLP) and set 

covering location problem (SCLP) are two distinct 

categories of covering location problems [9]. While a 

SCLP calls for covering all demand points with the 

minimum number of facilities, MCLP seeks the 

maximum possible covering with a fixed number of 

facilities. MCLP was introduced by Church and 

Revelle [10]. Allocated resources (e.g. budgets) in 

many practical applications are not sufficient to cover 

all demand points [11], so MCLP is used as a 

powerful tool for the optimal distribution of limited 

resources to reach maximum covering [12]. 

Examples of this problem appear in determining the 

optimal location for intersection safety cameras on an 

urban traffic network [13], determining optimal 

police patrol areas [14], determining the optimal 

location of fire stations [15], [16] and the optimal 

location of emergency facilities [17], [18].  

The MCLP has been a highly attractive area of study, 

but most researchers have considered MCLP in only 

one period. Dynamic MCLP considers one time 

horizon that includes T periods and finds the optimal 

location of P facilities. To the best of our knowledge, 

the most recent publications similar to our paper are 

those by Fazel Zarandi et al. [9] and Dell'Olmo et al. 

[13]. Fazel Zarandi et al. [9] considered a large-scale 

dynamic MCLP and applied a simulated annealing 

algorithm to solve large size problems, whereas 

Dell'Olmo et al. [13] proposed a multi-period MCLP 

for finding the optimal location of intersection safety 

cameras. However, it is worth noting that the current 

paper differs from both of these papers in terms of its 

problem definition and its solution method.  

This paper develops the dynamic MCLP of Fazel 

Zarandi et al. [9] by considering the maximum 

capacity constraint on the facilities and the minimum 

and maximum number of facilities in each period of 

the time horizon. Up to now, capacitated MCLP have 

assumed only one fixed capacity level for the facility 

at each potential site. In this paper, sample problems 

are solved by an exact method with Lingo 8.0. The 

exact solutions are compared with the solutions from 

genetic and hill climbing algorithms. 

Differences between this research paper and the one 

written by  Fazel Zarandi et al. (2013) is presented in 

Table 1. 

The rest of the paper is organized as follows: First, a 

concise literature review of covering problems and 

related issues is presented in Section 2. Section 3 

defines the problem, and the solution algorithms are 

introduced in Section 4. Parameter settings and 

numerical examples appear in Section 5, together 

with an analysis and discussion of the results. Finally, 

conclusions and outlooks for potential future research 

are offered in Section 6. 

 

2 Literature review 
 

While static problems consider only one period, 

dynamic problems refer to problems with multiple 

planning periods for which some information is 

initially unknown and becomes available over time. 

The concept of a dynamic covering location problem 

is not new in the literature [9]. Schilling [19] 

proposed a dynamic multi-objective model for 

emergency facilities such as ambulances. In fact, it 

combined T MCLPs. In this model, a constraint was 

imposed on the number of facilities in each period, 

and it was supposed that, if a facility was located in 

each period, it would serve until the end of the 

planning horizon.

 

Table 1. Difference between this paper and the one by Fazel Zarandi et al. (2013) 
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Fazel Zarandi et 

al. (2013) 
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constraints on the minimum or 

maximum number of facilities 

in each period 

-  - 

solution method 
Simulated 

annealing (SA) 

Lingo 

Genetic algorithm 

hill Climbing. 

Lingo 

Genetic 

algorithm 

hill Climbing 



180 J. Bagherinejad, M. Seifbarghy, M. Shoeib: Developing a dynamic… 
________________________________________________________________________________________________________________________ 

 

Afterwards, Gunawardane [20] proposed several 

multi-period public facility planning decision 

problems. In addition to proposing a dynamic model 

for the SCLPs, he proposed two dynamic models for 

the MCLPs. In the first model, the objective function 

minimized uncovered demands. The constraint on the 

number of facilities was imposed in each period. It 

was assumed that, once opened, a new facility would 

have to remain open and, once closed, an existing 

facility would have to remain closed. This 

assumption was not considered in the second model. 

But costs for uncovered demands and the opening or 

closing of facilities were considered. The purpose of 

the second model was to minimize those costs. 

Chrissis et al. [21] addressed the dynamic version of  

the set covering formulation for facility location 

problems. The problems were characterized by 

binary cover coefficients that possibly changed in 

value from one time period to the next. Repede and 

Bernardo [22] developed a maximal expected 

covering location model by considering time 

variations. 

Antunes and Peeters [23] proposed a dynamic (multi-

period) optimization model, allowing for facility 

closing or size reduction as well as facility opening 

and size expansion according to a predefined size. 

Encompassing specifications of a dynamic 

optimization model for public facilities planning, this 

model has been applied in Portugal for school 

networks.  

Gendreau et al. [24] considered a dynamic model for 

ambulance relocation, thus maximizing backup 

coverage and minimizing relocation costs. 

Rajagopalan et al. [25] proposed a multi-period 

SCLP for dynamic redeployment of ambulances, 

likewise minimizing the number of ambulances 

needed to provide a given level of coverage. The 

location of these ambulances are determinated in 

different time periods. Başar et al. [17] applied a 

multi-period double coverage approach for 

emergency medical service (EMS) stations in 

Istanbul, wherein the maximum number of EMS 

stations in each period is predefined. Fazel Zarandi et 

al. [9] proposed a simulated annealing algorithm to 

solve large-scale dynamic MCLP. In their model, a 

constraint on the number of facilities is imposed on 

the whole time horizon. Dell’Olmo et al. [13] 

proposed a multi-period MCLP for the optimal 

location of intersection safety cameras on an urban 

traffic network. According to this model, wherein the 

positions of available cameras are changed 

periodically in a given time horizon, the constraint on 

the number of facilities is imposed in each period and 

no cost for relocation is considered. This model has 

been studied in road accidents occurring on a portion 

of the urban traffic network of the city of Rome. 

Due to the dynamic nature of multi-period models, 

the word “dynamic” is used to describe multi-period 

in most research studies. Multi-period location 

problems consider a time horizon that includes a 

couple of time periods. These models propose better 

plans to respond to predictable demand fluctuations 

by time and space [9], [26]. Although dynamic 

covering models are not new and different types of 

MCLPs have been studied by researchers, as Fazel 

Zarandi et al. [9] stated, a literature review confirms 

that not enough attention has been paid to dynamic 

cases. As a result, dynamic MCLP seem to be a 

worthwhile research topic. 

Capacity is an important property of facilities. 

Facility capacity determines how much demand it 

can meet. The capacity of facilities may be limited or 

unlimited [27]. Although researchers such as Yin and 

Mu [28] have considered capacitated facilities in 

MCLPs, all these researchers considered only one 

period. In this paper, capacitated facilities are 

considered in multi-period MCLPs.  

In dynamic MCLPs, constraints on the number of 

facilities have been imposed in different ways. 

Dynamic MCLPs are shown in terms of the number 

of facility constraints in Table 2.

 

Table 2. Classification of dynamic MCLPs in terms of the number of facility constraints 

 

Number of facility constraints in dynamic MCLPs 

In each period of the time horizon 
In whole time horizon 

𝑃1 ≠ 𝑃2 ≠ ⋯ ≠ 𝑃𝑇  𝑃1 = 𝑃2 = ⋯ = 𝑃𝑇  

Başar et al. [17] 

Schilling [19] 

Gunawardane [20] 

Dell’Olmo et al. [13] Fazel Zarandi et al. [9] 
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In previous studies, when a constraint on the number 

of facilities is imposed on the whole time horizon, the 

dynamic MCLP does not consider a preference on the 

number of facilities to be located in each period. In 

fact, in addition to the number of facility constraints 

in the time horizon, constraints on the minimum and 

maximum number of facilities in each period may be 

imposed. In this paper, this issue is considered as it 

appears/seems to be a gap in our understanding of 

this issue.  

 

3 Problem definition 
 

MCLP arises from the fact that the total number of 

facilities to be located is restricted due to budget 

limitations. When the planning horizon includes 

multiple periods, budget limitations vary from period 

to period [29]. In addition, in real world situations, 

some data may change over time because of the 

dynamic nature of the business. Multi-period location 

problems have been proposed to approach situations 

in which parameters change over time according to 

predictable patterns [29]. In multi-period MCLP, the 

number of facilities is an important constraint. It may 

simply be assumed that the number of facilities in 

each period is known. Thus, each period can be 

considered an independent MCLP. When the number 

of facilities is limited by the available budget in the 

whole time horizon, determining how many of these 

facilities should be located in each period is a 

challenge that concerns policy makers. Previous 

studies have considered the number of facility 

constraints in each period or in the whole time 

horizon with no priority about the number of facilities 

in each period. The number of facility constraints in 

multi-period MCLP could be extended to allow other 

constraints, such as limitations on the maximum or 

minimum number of capacitated facilities in some 

period. 

On the basis of the time horizon considered, it is 

possible to identify periods in which events are most 

likely to happen. Although some periods are not 

eventful, due to emergency nature it may be 

necessary to locate a certain number of facilities in 

these periods; for example, it might be necessary to 

locate at least one facility in some periods. It is 

assumed that the minimum number of facilities are to 

to be added in this period. It is obvious that the 

minimum number of facilities in each period cannot 

be greater than the total number of facilities that can 

be added over a planning horizon. It may be that there 

is no information to determine the minimum number 

of facilities in some period since in that case the 

minimum number of facilities which can be added in 

this period is zero. In addition, it may be for some 

reason such as budget limitation in a period, it is not 

possible to add more than a certain number of 

facilities. Thus, the maximum number of facilities in 

such periods is known. If the maximum number of 

facilities in a period is not predefined, it should be 

noted that the maximum number of facilities cannot 

be more than the available facilities. In the first 

period, P is the number of available facilities. In the 

next period, the number of available facilities is P 

minus the number of facilities located in previous 

periods. In this paper, we consider comprehensive 

constraints on the number of facilities as follows: 

1. The constraint on the number of facilities is 

imposed over the whole time horizon. P is the total 

number of facilities which is located over a time 

horizon (Model A). This way: If minimum number of 

needed facilities in period t is predetermined (mt) then 

mt ≤ the number of facilities in period 𝑡; otherwise 

0 ≤ the number of facilities in period 𝑡 

If the maximum number of facilities that can be 

located in period t is predetermined (nt), then the 

number of facilities in period  

t≤ 𝑃 − ∑ located facilities𝑡−1
𝑡=1 ; otherwise the number 

of facilities in period t ≤ P. 

2. The constraint on the number of facilities is 

imposed for each period (Model B). Pt is the number 

of facilities for period t.  

On the other hand, each facility has capacity 

constraints which limit the number of demands it can 

serve. Consideration of incapacitated facilities limits 

the application of covering models [30]. 

Capacitated facility location problems ensure that the 

total demand assigned to a facility doesn't exceed the 

capacity of that facility. Until now, multi-period 

MCLPs haven’t considered capacitated facilities. In 

the models that have been proposed, facilities have 

only one fixed capacity level and demand coverage is 

binary, i.e., a demand point is either completely 

covered or not covered at all. As Fig. 1 illustrates, 

different demand types can be defined according to 

capacity constraints and coverage radius: 

1. A demand which is located beyond the covering 

radius of the facilities, so it is not allocated to any 

facility (e.g., dd in Fig. 1); 

2. A demand which is located within the covering 

radius of at least one facility. Here there are two 

cases: 

A) The demand at this point is more than the total 

capacity of the facilities which can cover this demand 

point. In such a situation, although this demand point 
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can be assigned to these facilities, it would not be 

covered (e.g., da and de in Fig. 1); 

B) The demand at this point is less than or equal to 

the total capacity of the facilities which can cover this 

demand point. Consequently, the demand at this 

point would be covered by at least one facility (e.g., 

db and dc in Fig. 1). 

 

 
 

Figure 1. Demand. 

 

It is assumed that demand points and eligible facility 

sites are considered identical in all periods; each 

demand point cannot host a facility. Only one facility 

may be located in each potential location. 

It is to be noted that location models are classified, 

based on their objectives, as private and public 

sectors. While a function of cost is to be optimized in 

private sector models, minimizing costs is not a 

concern in the public sector models [9]. Proposed 

models are attributed to the public sector. So, 

opening/closing facility costs are not considered. 

Maximizing covered demand over a time horizon by 

a given number of capacitated facilities is a strategic 

goal of proposed models. 

The proposed modification is motivated by the 

following observations. In problems such as locating 

facilities in fire stations, police stations or emergency 

rescue centers, demands are not the same at all sites 

during all periods. According to demand pattern, a 

planning horizon can be divided into multiple 

periods. Due to some reasons such as seasonal pattern 

of tourism demand, holidays, weather conditions, and 

local traditions, emergency events risk such as car 

accidents occurred increasingly dramatically in some 

period. So policy makers can predict some areas that 

have high event risk during particular periods. In 

order to achieve an effective emergency response 

system, managers may decide to add new facilities 

and to locate them over a planning horizon by 

maximizing covered demand. Due to budget 

limitations, MCLP has attracted and policy makers 

should decide how many faculties are located in each 

period and where these facilities are located. 

Effectively planning, the addition of these facilities 

can significantly reduce uncovered demand. It is 

clear that policy makers prefer to allocate more 

facilities during periods when events are most likely 

to happen. Due to budget limitations for each period, 

policy makers may not locate enough facilities. In 

fact, policy makers consider the fact that in a certain 

period only a certain number of facilities can be 

added. On the other hand, due to the importance of 

some periods, policy makers may decide to establish 

at least a certain number of facilities. This situation 

describes the difficulty that policy makers face when 

they try to maximize covered demand by considering 

the minimum and maximum number of facilities in 

each period. To consider this situation, two models 

(A, B) are proposed as follows: 

 

3.1 Model A 
 

For simplicity it is assumed that each facility serves 

in only one period of the time horizon and facilities 

relocation is not considered in model A. Considering 

relocation of facilities in model B is simple. 

The main assumption of this model is that the 

facilities serve in only one period of the time horizon. 

In other words, if a facility is located in one period, it 

will be closed at the end of that period and relocation 

of the facilities over that time horizon will not be 

considered. All facilities are closed at the end of each 

time horizon, therefore no facilities are located in 

eligible locations at the beginning of each time 

horizon (𝑥𝑗0 = 0). In this model, the constraint on the 

number of facilities is imposed over the whole time 

horizon. A constraint on the minimum and maximum 

number of facilities in each period may be imposed 

as well. Furthermore, in this particular model if the 

decision makers do not impose a constraint on the 

minimum number of facilities for that period t , it will 

not be necessary to locate a facility in that period. 

Moreover, the minimum number of facilities in that 

period is zero (𝑚𝑡 = 0). If the decision makers do not 

impose a constraint on the maximum number of 

facilities in period t (in this model, each facility is 

closed at the end of each period and is not relocated), 

it would be clear that the maximum number of 

facilities in period t cannot be more than the total 

number of facilities (𝑛𝑡 = 𝑃). In this model, it is 

assumed that the minimum or maximum number of 

facilities in each period is certain. 

Constraints on the minimum or maximum number of 

facilities could be imposed simultaneously in a 

period. For example, it might be necessary to locate 
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at least one facility in all periods or for some reasons, 

such as budget limitations, facilities might be located 

gradually. Therefore, all P facilities might not be 

available in period t. In such a situation, the 

maximum number of facilities that can be located in 

period t is dependent on the total number of available 

facilities in period t. It is assumed that the decision 

maker determines the minimum number of facilities 

in each period in such a way that the sum of these 

minima would not be more than the total number of 

facilities in the time horizon. On the other hand, the 

maximum number of facilities in each period has to 

be more than the minimum number of facilities in that 

period. In this paper, the number of facilities 

constraint is formulated in such a way that it 

encompasses all possible situations. Herein, a 

proposed dynamic MCLP is presented. First, the 

problem parameters and variables are defined. 

 

Sets and parameters 

i, I: The index and set of demand points. 

j, J: The index and set of eligible facility sites. 

t, T: The index and set of time periods. 

𝑎𝑖𝑡: The population/demand at point i in period t. 

d: The Euclidean distance from demand point i to the 

facility at j. 

S: The distance (or time) standard within which 

coverage is desired. 

N= {j| d ≤ S}: The set of points that are within a 

distance that is less than S from point i. 

P: The number of facilities to be located within the 

whole time horizon. 

𝑚𝑡: The minimum number of facilities in period t 

(∑ 𝑚𝑡 ≤ 𝑃𝑇
𝑡=1 ). 

𝑛𝑡: The maximum number of facilities in period t 

(𝑛𝑡 ≥ 𝑚𝑡 ∀𝑡). 

c: The capacity of each facility. 
 

Variables 

𝑥𝑗𝑡: A binary variable that equals one when a facility 

is sited at location j in period t and zero otherwise. 

𝑦𝑖𝑡: A binary variable which equals one if demand 

point i in period t is covered by one or more facilities 

stationed within S and zero otherwise. 

Then, the proposed model will be as follows: 
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The objective function (1) maximizes the overall 

covered demand. Constraints (2) illustrate that the 

demand point i in period t will be covered if its 

demand is less than or equal to the total capacity of 

the facilities which are located within the service 

distance from demand point i. Constraints (3) show 

that in each period, the total covered demand cannot 

be more than the total capacity of located facilities in 

that period (capacity constraint). Constraint (4) 

confines the total number of facilities in the whole 

time horizon up to P facilities. According to 

Constraints (5), if the minimum and maximum 

number of facilities were defined in period t, the 

number of located facilities in period t would be in 

the related interval. Otherwise, it would be between 

zero and the total number of available facilities 

(which are not located yet) in period t. Constraints (6) 

show that decision variables are binary.  

 

3.1.1 Linearization 

 

Constraints (5) cause non-linearization of the model. 

If we have a non-linear constraint in the form of 

 𝑦 ≤ 𝑚𝑖𝑛 (𝑥1, 𝑥2), it could be linearized by Eq. (7-10) 

where 𝛿 is a binary variable and G is a sufficiently 

large positive value (G≥P). 

 

 Gxx  21  (7) 
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3.2 Model B 
 

In this model, facilities are closed at the end of each 

https://www.google.com/search?newwindow=1&q=is+dependent&spell=1&sa=X&ei=oXzaVNXaE-TmywPxhYLYCw&ved=0CBwQBSgA&biw=1517&bih=714&dpr=0.9
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period but may be relocated in the subsequent periods 

if available. As such, a facility may serve in more 

than one period. In model B, the number of facilities 

at the beginning of the first period, and the change in 

this number at the beginning of each new period, are 

predefined. The number of facilities might increase if 

new facilities are required or decrease due to failures 

or access limitations. It is assumed that the number of 

facilities used at the beginning of each period is 

certain and predefined. In other words, a constraint is 

imposed on the number of facilities used in each 

period of the time horizon. 

Unlike model A, where a MCLP is proposed for the 

time horizon as a whole, we propose a MCLP for 

each separate period in model B. In other words, there 

is T MCLP applicable to model B, which provides 

maximum coverage of the whole time horizon by 

providing maximum coverage of each period. The 

main objective of this model is to provide the 

maximum coverage of the time horizon. In this way, 

a MCLP can be defined for each period. 

In each period of the time horizon, 𝑃𝑡  facilities (in 

specific cases, p facilities) are located 

(𝑃𝑡+1 = 𝑃𝑡 + 𝑑𝑡). In this model, we are faced with 

the location of added facilities (𝑑𝑡 > 0) and the 

relocation of facilities from the previous period (if the 

facility is available). From another viewpoint, model 

B could also be applied to a situation in which a 

certain number of facilities are located in each period 

and, at the end of each period are closed thus 

becoming unavailable.  

Parameters and decision variables for this model are 

similar to those in model A. The only difference is 

that in this model, 𝑃𝑡   is defined instead of P. 𝑃𝑡 is the 

number of facilities in period t. Therefore, this model 

does not have mt and nt.  
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The objective function and constraints in model B are 

exactly the same as those in model A. The only 

difference is the substitution of constraint (14) with 

constraints (4) and (5). Constraint (14) specifies the 

number of facilities in each period of the time 

horizon. 

 

4 Solution methods 
 

The MCLP is NP-hard, as shown by Church and 

Revelle [31] and Garey and Johnson [32]. Therefore, 

exact methods such as branch and bound can reach a 

solution within reasonable time only for small-size 

problems. In this paper, genetic algorithm and hill 

climbing heuristic are employed to solve the 

numerical problems. 

 

4.1 Genetic algorithm (GA) 
 

GA is one of the best methods for solving facility 

location problems. It was first proposed by John 

Holland in 1975. The main purpose of GA is to 

improve generations gradually using operators such 

as crossover and mutation. Each generation involves 

a set of individual solutions. Each iteration involves 

the selection of a set of chromosomes based on their 

fitness value and application of reproduction schemes 

to generate a set of new chromosomes. A selection 

strategy updates the population, and the process 

continues until the termination criterion is met. The 

rest of this section elaborates on the proposed GA 

[33]. 

 

4.1.1 Encoding scheme 

 

Many different approaches are capable of 

representing a solution for MCLP. Considering that 

Matlab has a powerful matrix-processing capability 

[34], a chromosome is represented with a binary 

matrix. This paper employs a multi-chromosome 

technique, and two binary matrices are defined. One 

of the matrices has I rows and T columns. Each 

element in this matrix represents the status 

(covered/uncovered) of demand point i in period t. 

The other matrix has J rows and T columns. In this 

matrix, each element represents the facility status for 

location j in period t. A value of 1 in the jth position 

means that there is a facility in location j in period t. 

The initial population for each chromosome is 

created randomly. 
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4.1.2 Selection 

 

This paper uses roulette wheel selection to select 

parents for crossovers. For mutations, chromosomes 

are selected randomly. Random selection is the 

simplest way to select chromosomes without 

considering fitness values. 

 

4.1.3 Crossover 

 

Crossover is a genetic operator that combines two 

chromosomes (parents) to produce a new 

chromosome (offspring). Pc is the crossover 

probability. If there is no crossover, the offspring is 

an exact copy of its parents. In this paper, one of two 

methods, one-point crossover and two-point 

crossover are randomly chosen. One-point crossover 

randomly selects a crossover point within a 

chromosome and then interchanges the two parent 

chromosomes at this point to produce two new 

offspring. The crossover point can be an element or a 

column of a matrix. Two-point crossover randomly 

selects two crossover points within a chromosome 

and then interchanges the two parent chromosomes at 

these points to produce two new offspring. Fig. 2 

illustrates the different types of crossover. 

 

4.1.4 Mutation 

 

Mutation serves to ensure that a population does not 

converge to a local minimum by changing the 

sequences of one or more genes within a 

chromosome at random. Although the probability of 

a mutation arising is usually at a very low frequency 

per thousand base pairs, several authors have alluded 

to a higher mutation rate when the GA has converged 

[35]. In this paper, three different methods for 

mutation are addressed, namely binary, swap and 

reversion mutation. In a binary mutation, a number of 

elements are selected at random and their values are 

said to change from one to zero or from zero to one 

[36]. In a swap mutation two elements are selected at 

random and their position is exchanged. In a 

reversion mutation the positions of two elements are 

reversed at random. The three different forms of 

mutation are depicted in Fig. 3. 

 

4.1.5 Termination criteria 

 

The algorithm will iterate until the maximum number 

of iterations is attained. 
 

 

 
 

Figure 2. Crossover. 

 

 
 

Figure 3. Mutation. 
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4.2 Hill climbing heuristic (HC) 
 

The hill climbing heuristic is a path-based local 

search method and is strongly dependent upon the 

starting positions for the search [37]. For the 

purposes of this paper, the hill climbing heuristic was 

applied due to its inherent simplicity and 

effectiveness. Moreover, it is frequently preferred in 

comparison with more complex search algorithms 

such as GA [38-41]. 

Hill Climbing uses a kind of gradient to guide the 

direction of search. Each iteration consists in 

choosing randomly a solution in the neighborhood of 

the current solution and retains this new solution only 

if it improves the fitness function. Stochastic Hill 

Climbing converges towards the optimal solution if 

the fitness function of the problem is continuous and 

has only one peak (unimodal function). On functions 

with many peaks (multimodal functions), the 

algorithm is likely to stop on the first peak it finds 

even if it is not the highest one. Once a peak is 

reached, hill climbing cannot progress anymore, and 

that is problematic when this point is a local 

optimum. Stochastic hill climbing usually starts from 

a random select point. A simple idea to avoid getting 

stuck on the first local optimal consists in repeating 

several hill climbs each time starting from a different 

randomly chosen point. This method is sometimes 

known as iterated hill climbing. By discovering 

different local optimal points, it gives more chance to 

reach the global optimum. It works well if there is not 

too many local optima in the search space. But if the 

fitness function is very “noisy” with many small 

peaks, stochastic hill climbing is definitely not a good 

method to use. Nevertheless, such methods have the 

great advantage to be really easy to implement and to 

give fairly good solutions very quickly [33]. 

In this paper an initial population was first generated 

at random and its representation in hill climbing 

solutions was similar to those obtained from GA. 

Some neighbours are generated for each solution 

within each iteration. The hill climbing heuristic 

includes local searches, so finding a neighbour is the 

primary concern. Neighbors are generated via 

mutation methods in GA, whereas in the hill climbing 

heuristic initial solutions and generated neighbours 

are sorted based upon the fitness function and the 

initial solution is replaced by a ‘best solution’. This 

process continues until the algorithm is unable to find 

better neighbours to satisfy current solutions. For the 

purposes of this paper 10 initial solutions were 

generated randomly, and in each iteration for each 

solution 5 neighbours were generated (a total of 50 

neighbors for each solution).  In this algorithm, a 

termination criterion is used to reach the maximum 

number of iterations. The maximum number of 

iterations for model A was 20 and for model B 10.  

 

5 Numerical examples 
 

5.1 Test problems 

 
To generate test problems, a similar approach to 

Revelle et al. [42] is used. According to this 

approach, the locations of demand points and eligible 

facility sites are randomly generated using a uniform 

distribution between 0 and 30 for both x and y 

coordinates. Populations on the demand points in 

each time period are randomly generated using a 

uniform distribution between 0 and 100. Then, the 

distances between the points are defined as their 

Euclidean distance. Revelle et al. [42] used this 

method to generate one-period problems. Fazel 

Zarandi et al. [9] used this method to generate sample 

problems. Since they considered a dynamic version 

of the problem, it was necessary to consider time 

scale. They considered all sample problems for five 

periods. It should be noticed that in both papers 

aiming to solve large problems, they indicate the 

number of demand points. In this paper, the number 

of demand points is being determined according to 

the complexities of the proposed models. As the 

proposed models are dynamic, it is necessary to 

specify the time scale. Therefore, the problems are 

being considered in different time periods. The 

minimum number of facilities in each period is 

randomly generated using a uniform distribution 

between 0 and p (in such a way that ∑ 𝑚𝑡 ≤ 𝑃)𝑇
𝑡 . The 

maximum number of facilities in each period is 

generated by random numbers equal to and more than 

the minimum number of facilities in that period. As a 

result, for each model, 30 sample problems are 

generated in defined intervals.   

Lingo 8.0 is used to solve these problems, and results 

are compared against those obtained using GA and 

hill climbing algorithm. 

 

5.2 Parameter setting 
 

Although appropriate selection of parameters and 

operators in each algorithm depends on the type of 

problems, most researchers neglect this point and set 

algorithm parameters based on the reference values 

of the previous similar studies [43]. There are several 

static methods for designing experiments to tune the 



Engineering Review, Vol. 37, Issue 2, 178-193, 2017.  187 
________________________________________________________________________________________________________________________ 

algorithm. Among these methods, the full factorial 

method is used most frequently. The Taguchi method 

is used to reduce the number of required experiments. 

In the Taguchi method, orthogonal arrays are used to 

survey numerous decision variables with a small 

number of experiments. Taguchi transformed the 

repetitive data to another value called the measure of 

variation. This transformation is defined as the signal 

to noise (S/N) ratio. The purpose is the maximization 

of the S/N ratio [44]. In this study, objective functions 

are “the larger the better”. The formula used for 

calculating the S/N ratio (the large the better) is given 

by Eq. (16). 
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Where 𝑥𝑖 = observed response value and n = number 

of replication. 

In this study, four parameters at three levels are 

considered for each GA. The factors and their levels 

are presented in Tables 3 and 4. According to the 

standard table of orthogonal arrays, L9 is selected as 

the fittest orthogonal array design that satisfies all the 

minimum requirements. For each algorithm setting, 

six sample problems are considered and each 

problem is iterated five times. Size of the sample 

problems is different; therefore, a substantial 

difference exists between their objective functions. 

Therefore, the S/N ratio is calculated after converting 

the raw data to a relative deviation index (RDI). 

RPDijk is calculated using Eq. (17). 
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In Eq. (17), OFijk is the objective function value 

attributed to iteration j in sample problem i in 

scenario k. The values li and ui are the minimum and 

maximum values of the objective function for the ith 

sample problem. 

In the Taguchi method, S/N is considered the first 

criteria. A meaningful difference might not exist 

between different levels of S/N. Therefore, another 

criteria named 𝑅𝐷𝐼̅̅ ̅̅ ̅
𝑘 is defined for scenario k, which 

is calculated by Eq. (18). 𝑅𝐷𝐼̅̅ ̅̅ ̅
𝑘 is considered 

a “smaller-the-better” criteria. 
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Finally, the best combination of parameters is 

selected for GA according to S/N (Fig. 4 and Fig. 6) 

and RPD (Fig. 5 and Fig. 7) charts. Selected levels 

are colored in Tables 3 and 4. 

 

 
 
Figure 4. S/N ratio (model A)        
 

 
 
Figure 5. RDI (model A) 
 

 
 
Figure 6. S/N ratio (model B) 

 

 
 
Figure 7. RDI (model B) 
 

5.3 Results and discussions 

 

Test problems are solved using three approaches. 

First, each problem is solved using Lingo 8.0. Then, 

solutions are compared against the results of the 

proposed GA and hill climbing heuristic. 

Computational results of the problems are 

summarized in Tables 5, 6 and 7. In each case, 

average computational time and objective function in 
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five iterations are reported. Lingo uses the branch and 

bound technique to solve problems. Objective bound 

illustrates the theoretical bound of the objective 

function. This bound is limit which shows how much 

the solver can improve the objective function. In 

some cases, the best values of the objective function 

and the objective bound might be very close to each 

other. The best value of the objective function cannot 

exceed the objective bound [45]. Whereas the 

problems are NP-hard, Lingo 8.0 can reach the 

solution in a reasonable time only for small-size 

problems. Coloured lines indicate problems in which 

Lingo 8.0 is unable to find the optimal solution in one 

hour. In such cases, instead of the optimal value, the 

objective bound and best feasible solutions found in 

one hour are reported. Heuristic and meta-heuristic 

algorithms might achieve a better objective value 

than Lingo 8.0 in one hour. In such a situation, the 

gap will be negative (Gap < 0) [46], [47] and gap can 

be calculated using Lingo objective bound [48]. 

 

Table 3. Parameter and their levels in GA (model A) 

 
Parameter Level 1 Level 2 Level 3 

𝑃𝐶  0/5 0/55 0/6 

𝑃𝑚 0/01 0/05 0/1 

population 10 15 20 

Max iteration 20 40 60 

 

Table 4. Parameter and their levels in GA (model B) 

 
Parameter Level 1 Level 2 Level 3 

𝑃𝐶  0/75 0/85 0/95 

𝑃𝑚 0/01 0/03 0/05 

population 20 30 40 

Max iteration 20 25 30 

 
5.3.1 Computational results of model A 

 

Computational results of the problems are 

summarized in Table 5. According to the results of 

30 sample problems of model A, in two thirds of 

sample problems Lingo is unable to find an optimal 

solution in one hour. In four problems, GA can find 

better solutions than the best solution of Lingo in only 

12 seconds (GapGA < 0). In other problems, except 

for one problem, GA finds the solution with a gap less 

than 1.9% in 12 seconds. The hill climbing heuristic 

can always find a solution better than or equal to the 

best solution of Lingo in less than 60 seconds 

(GapHC ≤ 0). This can be stated as follows: 

 

GapHC ≤ GapGA , GapHC ≤ 0 

TimeGA < TimeHC 
 

Therefore, it can be concluded that although hill 

climbing has good ability in finding Lingo objective 

bound, GA is superior to hill climbing in terms of 

computational time. 

 
5.3.2 Computational results of model B 

 

As shown in Tables 6 and 7, sample problems in 

model B are considered for six time horizons. For 

each time horizon, five sample problems in different 

sizes are solved. In six sample problems, Lingo can 

find the optimal solution in a short time. As the 

number of periods increases, exact computational 

time increases too. In more than two-thirds of sample 

problems, Lingo is unable to find the optimal solution 

in one hour. For more than half of the sample 

problems, GA can find a better solution than (or equal 

to) the best solution of Lingo in one hour (GapGA <
0). In other problems except two, GA achieves a gap 

less than 1.1%. Hill climbing algorithm in more than 

70% of the problems can find a solution better than 

or equal to the best solution of Lingo in one hour 

(GapHC < 0). In other problems except two, it can 

achieve a gap less than 0.8%. The computational time 

for each algorithm is presented in Table 8. Overall, it 

can be stated as follows: 

 

TimeHC < TimeGA 
 

GapHC ≤ GapGA 
 

Therefore, compared with GA, hill climbing can 

achieve better results in a shorter time.   

The structure of model and the size of sample 

problems affect Performance of algorithms. The 

number of facilities is an important constraint in 

MCLPs. In model A, we defined the minimum or 

maximum number of facilities in each period in 

addition to number of facility in whole of time 

horizon. But in model B, number of facility in each 

period is simply predefined. So in this model, time 

periods are independent and we have a capacitated 

MCLP in each period. Although model B is simply 

summation of some MCLP, model A is single MCLP 

that during all time periods depends on each other. In 

short, Complexity of model A and B is different. 

According to the results of sample problems, 

algorithm hill climbing can find better solutions (in 

term of gap and computational time) in the model B 
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by local search but the model A is complex and 

genetic algorithm reaches better results. 

 

6 Conclusion and future research areas 
 

In this paper, the dynamic MCLP has been extended 

to the capacitated dynamic MCLP. Capacity facility 

has been considered and a new constraint defined for 

the number of facilities. The developed models were 

solved by GA and hill climbing, and the results were 

compared with exact solutions of Lingo 8.0. We have 

shown that while GA and hill climbing heuristics are 

superior to the exact method in terms of runtime, 

there are negligible errors compared to the optimal 

solutions. Although GA and hill climbing heuristics 

show great performance in solving capacitated 

dynamic MCLP, one may assess the performance of 

other methods in finding solutions to the same 

problem. 

 

Table 5. Computational results of model A 

 
 

Hill climbing heuristic GA Lingo 
Test 

problems 

Gap (%) Time (s) 𝑍∗ Gap (%) Time (s) 𝑍∗ Time (s) 
Objective 

bound 
𝑍∗ P C S 

01/1- 37/77 100 2/02 11/79 97 3600 100 99 10 

10 

10 

75/4- 07/38 8/149 27/0 11/81 142/6 3600 150 143 15 

812/0- 38/32 198/6 92/1 11/84 193/2 3600 200 197 20 

23/5- 38/56 294/4 16/0 11/97 236/6 3600 250 237 25 

02/6- 38/81 295/8 93/1- 12/12 284/4 3600 300 279 30 

0 37/94 120 33/1 12/02 118/4 629 - 120 10 

12 

449/0- 29/84 179/8 78/1 11/93 175/8 3600 180 179 15 

446/0- 38/83 239 52/0 99/11 227/8 3600 240 229 20 

333/8- 40/18 299 34/4- 12/00 288 3600 300 276 25 

085/9- 40/85 357/8 21/6- 12/39 438/4 3600 360 328 30 

0 39/78 100 1 12/26 99 239 - 100 10 

10 

15 

671/0- 40/00 150 0/93 12/40 147/6 3600 150 149 15 

0 40/25 200 0/8 12/49 198/4 1835 - 200 20 

40/0- 40/72 250 0/8 12/75 247 3600 250 249 25 

26/0- 43/70 299/8 1/13 12/24 295/6 3600 300 299 30 

0 38/77 120 0/66 11/77 119/2 756 - 120 10 

12 

0 39/15 180 0/33 11/49 179/4 1519 - 180 15 

41/0- 39/22 192 0/58 11/58 237/6 3600 240 239 20 

01/1- 39/62 300 0/06 11/60 296/8 3600 300 297 25 

27/0- 39/81 360 0/27 11/87 358 3600 360 359 30 

0 38/75 100 0/8 11/72 99/2 180 - 100 10 

10 

20 

67/0- 39/18 150 0/13 11/81 148/8 3600 150 149 15 

50/0- 39/32 200 0 11/81 199 3600 200 199 20 

40/0- 39/58 250 0/72 11/92 247/2 3600 250 249 25 

33/0- 39/80 300 0/53 12/01 297/4 3600 300 299 30 

0 38/65 120 0/16 11/78 119/8 166 - 120 10 

12 

0 39/07 180 0/88 11/83 178/4 442 - 180 15 

0 39/57 240 0/75 11/92 238/2 2094 - 240 20 

0 39/65 300 0/46 12/03 298/6 3600 - 300 25 

40/1- 40/22 360 16/0- 12/15 355/6 3600 360 355 30 

 

 

 



190 J. Bagherinejad, M. Seifbarghy, M. Shoeib: Developing a dynamic… 
________________________________________________________________________________________________________________________ 

 

Table 6. Computational results of model B (I=J=300) 

 

Hill climbing GA Lingo 
Test 

problems 

Gap (%) Time (s) 𝑍∗ Gap (%) Time (s) 𝑍∗ Time (s) 
Objective 

bound 
𝑍∗ T C S 

0 21/99 175 0 50/58 175 1 - 175 3 

5 

5 

26/0- 37/03 8/298 067/0 84/81 8/297 3600 300 298 5 

25/0 57/08 398 80/0 121/80 8/395 3600 400 399 7 

66/0 80/79 2/569 59/0 182/59 6/569 3600 575 573 9 

029/3- 72/57 6/530 73/0- 175/54 8/518 3600 525 515 10 

416/0 99/06 718 10/1 31/235 713 3600 725 721 12 

0 45/21 245 0 33/52 245 2 - 245 3 

7 

0 34/36 420 0 89/87 420 2 - 420 5 

86/0- 92/52 8/559 64/0- 14/125 6/558 3600 560 555 7 

07/0- 63/82 6/803 14/0 68/180 8/801 3600 805 803 9 

10/0- 50/72 8/734 0 60/156 734 3600 735 734 10 

01/0 78/100 8/1013 21/0 05/233 8/1011 3600 1015 1014 12 

 

Table 7. Computational results of model B (I=400, J=300) 

 

Hill climbing heuristic GA Lingo 
Test 

problems 

Gap (%) Time (s) 𝑍∗ Gap (%) Time (s) 𝑍∗ 
Time 

(s) 

Objective 

bound 
𝑍∗ T C S 

0 63/33 120 0 92/78 120 138 - 120 3 

3 

5 

88/0 45/56 4/178 2 82/132 4/176 471 - 180 5 

54/1- 03/82 8/249 65/0- 29/132 6/247 3600 255 246 7 

0 34/124 334 19/1 67/272 330 3600 345 334 9 

73/2 93/120 4/305 54/2 68/236 306 3600 315 314 10 

35/1 44/151 8/452 78/2 94/332 2/446 3600 465 459 12 

0 08/34 200 0 00/75 200 2 - 200 3 

5 

67/0- 29/57 300 53/0- 45/125 6/299 3600 300 298 5 

23/0- 01/82 425 09/0- 71/178 4/424 3600 425 424 7 

26/1- 38/129 2/574 09/1- 95/248 2/573 3600 575 567 9 

03/0- 34/110 2/524 22/0 78/235 8/522 3600 525 524 10 

10/0- 68/150 8/773 20/0 13/322 4/771 3600 775 773 12 

0 66/32 280 0 175/76 280 2 - 280 3 

7 

0 79/54 420 0 27/129 420 3182 - 420 5 

33/00- 52/83 595 30/0- 27/180 8/594 3600 595 593 7 

12/0- 04/124 805 0 75/261 804 3600 805 804 9 

13/0- 38/112 735 13/0- 00/241 735 3600 735 734 10 

53/0- 89/161 8/1084 20/0- 73/329 2/1081 3600 1085 1079 12 

A possible future study could be to compare using 

various heuristics/meta-heuristics on this problem. 

Another avenue for future research could be to assess 

the performance of the hill climbing heuristic for 

other variants of MCLP, or considering some 

parameters of the problem as fuzzy variables. Fuzzy 

theory can be utilized in this model where input 

parameters such as minimum and maximum numbers 

of facilities in each period cannot be estimated with 

certainty. This model can also be investigated in 
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conditions where each facility has a failure 

probability.

Considering probabilistic demand is a real 

contribution to the model. 

 

Table 8. Computational time in model B 

 

Time periods 3 5 7 9 10 12 

Hill climbing < 30 < 60 ≅ 60 ≅ 90 <120 ≅ 120 

GA ≅ 60 < 120 ≅ 150 < 210 < 240 < 300 
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