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 Gneisses and granites mechanical properties 
knowledge such as the Los Angeles and Micro 
Deval tests is very important for the engineer when 
designing and building civil engineering works. 
Laboratories test often performed to obtain Los 
Angeles and Micro-Deval values are expensive and 
time consuming. For this, the depths (parallel and 
perpendicular to the foliation planes) obtained 
during a rock drilling test will be used to estimate 
its Los Angeles and Micro Deval values. In this 
study, an ANFIS approach is used to estimate 
gneisses and granites Los Angeles and Micro-
Deval that have been compared to the Multiple 
Linear Regression method. For this purpose, we 
have used a database of a sample size of 80 to 
determine the parameters of the ANFIS and 
Multiple Linear Regression   models, and a second 
sample of size 15 used for the validation tests. The 
results obtained show us that we can estimate the 
mechanical properties (Los Angeles and Micro-
Deval) of gneisses and granites with the ANFIS 
approach. 
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1 Introduction  
 
The construction of important civil engineering 
structures (dams, power plants, buildings, bridges, 
roadways) requires the use of good quality materials 
(aggregates) to guarantee users safety. The main 
specification for the use of aggregates relates to 
their mechanical strength. The current tests of Los 
Angeles (LA) and Micro Deval (MD) evaluating the 
quality and durability of these aggregates are 
expensive, difficult and time-consuming. Our 
constant concern in this study is to reduce the 
relatively high costs of these tests by developing 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 
models where input will include the depth values 
obtained during the rock drilling tests and out will 
give the Los Angeles Abrasion (LA) and the Micro 
Deval Abrasion (MD). The test consists of 
measuring the depth created by the drill in a rock for 
a fixed time (t). Thus the use of the ANFIS 
approach by Gokceoglu et al. [1] to predict the 
mechanical properties of rocks, by Aali et al. [2] to 
estimate the soil saturation coefficient and by Singh 
et al. [3] for the prediction of the deformation 
modulus of rocks, we believe that the mechanical 
properties of rocks, such as the Los Angeles 
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Abrasion and the Micro Deval Abrasion, can be 
predicted with  the ANFIS approach. The ANFIS 
combines the advantages of a neural network [4] 
and fuzzy logic [5]. In this study, we used the 
ANFIS approach and compared it to an approach 
based on the Multiple Linear Regression [6] for the 
prediction of the mechanical properties of rocks 
from the perforation depth resulting from a drilling 
test. The Los Angeles and Micro Deval tests 
respectively make it possible to determine the 
resistance to abrasion and attrition wear of the rocks 
in the presence of water [7, 8] and therefore the 
mechanical properties of the aggregates. 
 
2 Experimental investigation 

 
2.1 Dataset 

 
In this study, the ANFIS approach and the MLR 
method are used to predict the mechanical properties 
of rocks including the Los Angeles and Micro Deval 

from the depths that represent the models input data. 
These depths are obtained during parallel, 
perpendicular and random perforations on gneisses 
and granites during the drilling test. Indeed, the 
aggregates most used in civil engineering work 
come from gneisses, granites in Togo. To achieve 
the objectives, we were interested in the gneisses of 
the structural unit of the Benin-Togolese plain and 
granites of the northern part of Togo, originating 
from the African croton [9] which is represented by 
95 samples taken from the five (5) regions of Togo. 
We have a database with a total of 95 rock samples, 
80 of which were used for learning process, 15 to 
the validation test. 
The rock drilling test consists of perforating the 
gneiss and granites using a 6 mm drill with a speed 
of 550 rpm under a load of 10 N. After the 10 sec 
perforation time, the depth created by the drill in a 
parallelepiped shaped rock sample (Figure 1) is 
measured by a slide caliper. 

 

 
 

Figure 1. Samples prepared for the rock drilling test 
 
To perform the perforation, a drill press 
CINCINNATI (Figure 2) was used to which a 
dynamometer was attached applying a drilling force 
of 10 N.  On each rock sample, five (05) 
perforations were produced in the foliation layers 
(both parallel and perpendicular plane) for gneisses 
and in two perpendicular planes for granites. By 
foliation we mean the set of parallel planes 
according to which the new minerals are 
crystallized. The average value of the five (05) 
depths of perforation obtained will serve as the input 

data of the models to be produced. Thus, we have 
the input data, which is the average depth of 
perforation parallel to the plane of foliation, which 
we will simply call depths of perforation parallel to 
the foliation plane (DPaFP) and the depths average 
of the perforation perpendicular to the foliation 
plane is also called in a simple way perforation 
depths perpendicular to the foliation plane (DPeFP). 
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2.2 Multiple linear regression 
 

The Multiple Linear Regression Model [6, 10] for 
two regresses 1x  and 2x  is given in (1), 
 

0 1 1 2 2y x xβ β β ε= + + +  (1) 
 
where y  represents the response, 0β  , 1β , 2β   are 
called the regression coefficients, and ε  is a 
random error term. 

 

 
     

Figure 2. Drill Press CINCINNATI 
 

2.3 The adaptive neuro-fuzzy ANFIS 
 

The neuro-fuzzy system is a hybrid system that 
combines the techniques of fuzzy logic and neural 
networks [5, 6, 12 and 12]. 
 

We distinguish two great families of fuzzy systems 
[13], that of Mamdani and that of Takagi-Sugeno. 
Thus, the neuro-fuzzy systems are classified into 
two large families that are the Mamdani neuro-fuzzy 
system and the Takagi-Sugeno neuro-fussy system. 
The Takagi-Sugeno neuro-fuzzy systems are most 
widely used [14], thanks to their universal 
approximation properties and the fact that they no 
longer require a defuzzification module as in the 
case of the Mamdani fuzzy system. One of the 
commonly used tools, based on the Takagi-Sugeno 
neuro-fuzzy system is ANFIS. The ANFIS is an 
adaptive Neuro-Fuzzy Inference System which 
consists of  a five (5) layer MLP neuron network for 
which each layer corresponds to the realization of a 
step of a fuzzy inference system of type Takagi-
Sugeno. 
For simplicity, we assume that the inference system 
fuzzy with two inputs x and y, and z as an output. 
Assume that the rule base contains two fuzzy 
Takagi-Sugeno rules (relations (3) and (4)). 
 
Rule 1:  

IF 𝑥𝑥 is A1 and 𝑦𝑦 is B1  
THEN 𝑧𝑧1 = 𝑝𝑝1 𝑥𝑥 + 𝑞𝑞1 𝑦𝑦 + 𝑟𝑟1         (3) 

 
Rule 2: 

IF𝑥𝑥 is A2 and 𝑦𝑦 is B2  
THEN 𝑧𝑧2 = 𝑝𝑝2 𝑥𝑥 + 𝑞𝑞2 𝑦𝑦 + 𝑟𝑟2   (4) 

 
The ANFIS has an architecture laid by five 

layers as shown in Figure 3 [14]: 
 

 

 
 

Figure 3. Architecture ANFIS 
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Layer 1: this layer allows the fuzzification of the x 
and y inputs. Each neuron in this layer corresponds 
to a linguistic variable. The x and y entries are 
fuzzified by using membership functions of the 
linguistic variables Ai and Bj, (usually their form 
are triangular, trapezoidal or Gaussian). For 
example, the relations (5) and (6) define the 
Gaussian membership function: 
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where, i, j = 1.2; and are the centers and σ the width 
of the membership function. 
The outputs of the first layer are given by the 
relations (7) and (8): 
 

1, ( )
ii Ax xµ=  (7) 

 
1, ( )

jj By yµ=  (8) 
 
Then, the values μAi (x), μBj (y) respectively 
represent the degree of belonging of value x to the 
set 𝐴𝐴 and y to the set B. 
Layer 2: each node corresponds to a fuzzy T-
standard (the T-standard operator makes it possible 
to achieve the equivalent of a Boolean "AND"). It 
receives the output of fuzzification nodes and 
calculates its output value thanks to the product 
operator (this operator is generally used but there 
are others: max, min ...). 
The activation function of the neurons i of the first 
layer is expressed by the relation (9) [5]: 
 

{ }min ( ), ( ) , 1,2; 1,2
i ji A Bw x y i jµ µ= = =  (9) 

 
Layer 3: This layer normalizes the results provided 
by the previous layer according to relation (10). The 
results obtained represent the degree of involvement 
of the value in the final result [15]. The output of 
this layer can be written according to relation (10). 
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The outputs of this layer are called the normalized 
weights. 
Layer 4: Each node of this layer is connected to the 
initial inputs. The result is calculated according to 
its input and a linear combination of the first order 
of the initial entries (Takagi-Sugeno approach).  
The output of this layer is expressed by the relation 
(11). 
 

4
1 2( )i i i i i if y w p x q x r= = × + +  (11) 

 
where:  is the output of the third layer; and  

  are the set of parameters designated under 
the name: "consequent". 
Layer 5: it consists of a single neuron which 
calculates the sum of the signals of the preceding 
layer accordingly to relation (12): 
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The ANFIS uses a hybrid learning process for the 
estimation of the premise and consequent 
parameters [1]. The hybrid algorithm splits learning 
process in two (02) independent stages: the first 
stage is the adaptation of learning weights, and the 
second one that of the adaptation of the nonlinear 
membership functions. This method is able to 
decrease the complexity of the algorithm, and at the 
same time increase learning time [16]. 
 
2.4 Statistical indicators used for performance 
evaluation 
 
To assess the performance of the model, mean 
absolute percentage error (MAPE), root mean 
square error (RMSE), correlation coefficient (R2), 
variance account for (VAF) and relative percentage 
error (RPE), have been used in this study. In the 
following, a brief description of the considered 
statistical parameters is provided. 
 
2.4.1 Relative percentage error  
 
The RPE shows the percentage deviation between 
the predicted values xi and those obtained by 
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measured values yi and its values ranging between -
10% and +10% which are usually considered 
acceptable. RPE is defined as: 
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2.4.2. Mean absolute percentage error  
 
The MAPE shows the mean absolute percentage 
difference between the predicted values and those 
attained by the measured values. The MAPE is 
calculated by [3, 4]: 
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2.4.3 Root mean square error  
 
The RMSE identifies model accuracy by comparing 
the deviation between the values achieved by the 
predicted values and those of measured data. The 
RMSE has always a positive value and it is 
calculated using equation (15) [4]: 
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2.4.4 Correlation coefficient  
 
The R2 which indicates the strength of the linear 
relationship between the predicted values and the 
measured by [4]: 
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2.4.5 Variance Account for  
 
The Variance Account For (VAF) was calculated 
using equation (17):  
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with the Variance (Var) were given by equation 
(18).  
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3. Results and discussion 
 
The comparison between the MLR and ANFIS 
models for the prediction of LA and MDE are made. 
Two variables, namely the foliation plane parallel 
perforation depth (DPaFP) and the perforation depth 
perpendicular to the foliation plane (DPeFP) from a 
drilling test, are used as input variables for each 
model. 80 measurement points are used to determine 
the parameters of each model. Each measurement 
point in Figures 4 and 5 has the following 
coordinates: (DPaFP, DPeFP, LA) or (DPaFP, 
DPeFP,MD). 
Figures 4 and 5 also show us respectively the plane 
corresponding to the equation (19) of the model 
MLR for the prediction of LA obtained with an R2 
of 0.855 and the plane corresponding to equation 
(20) of the MLR model for the prediction of MDE 
obtained with an R2 of 0.833. 
 

3.286 0.655 20.329LA DPaFP DPeFP= + +  (19) 
 

1.603 0.266 7.664MDE DPaFP DPeFP= + +  (20) 
 
The results obtained show that there is a strong 
correlation between LA or MD with DPaFP 
compared to DPeFP, which is explained by the high 
values of the weights assigned to DPaFP. 
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Figure 4.  Result of LA prediction model using MLR  
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Figure 5. Result of MD prediction model using MLR  
 
ANFIS models for LA and MD estimation are done 
according to the structure of Figure 6. 
 

 
 
Figure 6. The ANFIS model structure for LA and 

MD prediction 
 
To perform fuzzyfication entries, two membership 
functions (Gaussian and Bell) often cited in the 
literature [3] are used. Figures 7 and 8 present 
respectively the input variables of the ANFIS 
models with Gaussian and Bell membership 
functions. 
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Figure 7. Gaussian membership function plot for 

input (a) ‘’DPaFP’’, (b) ‘’DPeFP’’ 
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Figure 8. Bell membership function plot for input 

(a) ‘’DPaFP’’, (b) ‘’DPeFP’’ 
 
For each type of membership function (Bell or 
Gaussian), the hybrid algorithm is applied to the 
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membership function of each input. This hybrid 
algorithm uses the backpropagation method and the 
least squares method to obtain the optimal 
parameters of the ANFIS model. To execute this 
hybrid algorithm, the iteration number is set to 100. 
Figures 9 and 11 show the RMSE learning process 
and validation error variations for the prediction of 
LA and MD, respectively, when the Bell 
membership function is used. . We can note on these 
two Figures (9 and 11) that RMSE errors during 
validation tests reach minimum values after 10th 
iteration more precisely at the 4th iteration for 
ANFIS LA prediction models and MD prediction.  
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Figure 9. Training and checking error curve for LA 

prediction using Bell membership 
function 
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Figure 10. Training and checking error curve for 

LA prediction using Gaussian 
membership function 
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Figure 11. Training and checking error curve for 

MD prediction using Bell’s membership 
function  

 

 
 
Figure 12. Training and checking error curve for 

MD prediction using Gaussian 
membership function 

 
On the other hand, from the curves of the RMSE 
errors of Figures 10 and 12 which show the learning 
process and validation results respectively for the 
prediction of LA and MD for a Gaussian 
membership function, we note minimal errors 
RMSE starting from Iteration 30. 
To assess the performance of each model developed 
in this article, we calculated the five indicators 
whose formulas are presented in Section 4 of this 
article. Figures 13 and 14 present respectively the 
performances of the ANFIS prediction models of 
LA for a membership function of Bell and a 
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Gaussian membership function. The results of 
Figures 13 and 14 show us that: the prediction 
model of LA by the ANFIS approach with the Bell 
type membership function is performed with an R2 
of 0.946, an RMSE of 2.181, an MAPE of 7.144, an 
VAF of 66.095 against the ANFIS approach with 
the Gaussian type membership function realized 
with an R2 of 0.942, an RMSE of 2.035, with an 
MAPE of 6.732 and an VAF of 75.33. It should also 
be noted that the MLR approach, using the equation 
(19), allows predicting LA during validation tests 
with an R2 of 0.952, an RMSE of 2.205, with an 
MAPE of 7.312 and a VAF of 63.788. From the 
results visualized in Figures 13 and 14 we can 
conclude that the appropriate model to estimate LA 
is the ANFIS model using the Gaussian type 
membership function. To evaluate the appropriate 
model among the ANFIS model and the MLR 
model, Table 1 shows for each validation data, the 
prediction error (RPE) of the 15 cases of the ANFIS 
model predicts LA with a maximum RPE of 
17.385% against a maximum RPE of 24.438% for 
the MLR model. Thus the ANFIS model of 
membership function of Gaussian input variables is 
the most appropriate for estimating LA. 
Respectively, figures 15 and 16 present the 
performances of the ANFIS prediction models of 
MD for a membership function of Bell and a 
Gaussian membership function. The results shown 
in Figures 15 and 16 indicate that the prediction of 
M by the ANFIS approach with the membership 
function using the type Bell is carried out. The R2 
was about 0.933, with an RMSE of 1.083, an MAPE 
of 7.407, and a VAF 65.205 against the ANFIS 
approach. Meanwhile, the Gaussian membership 
function gave an R2 of 0.924, an RMSE of 1.054, an 
MAPE of 7.623, and a VAF of 70.905. Note also 
that the MLR approach using equation (20) allows 
MD to be predicted during validation tests with an 
R2 of 0.924, an RMSE of 1.173, an MAPE of 8.465 
and a VAF of 52.372. From the results visualized on 
Figures 15 and 16 we can conclude that the 
appropriate model for estimating MD is the ANFIS 
model using a Gaussian type membership function. 
To evaluate the appropriate model among the 
ANFIS model and the MLR model, Table 1 shows 
for each validation data, the prediction error (RPE) 
for the 15 cases of the ANFIS model predicts MD 
with a maximum RPE of 23.326% against a 
maximum RPE of 24.041% for the MLR model. 
Thus, the ANFIS model of membership function of 

the Gaussian input variables is the most appropriate 
for estimating MD.  
Gaussian membership function versus Measured LA 
values respectively the input variables of the ANFIS 
models with Gaussian and Bell membership 
functions. 
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Figure 13. Scatter plots of predict LA values using 

Bell membership function versus 
Measured LA values 
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Figure 14. Scatter plots of predict LA values using 

Gaussian membership function versus 
Measured LA values 
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Figure 15. Scatter plots of predict MDE values 
using Bell membership function versus Measured  
MD values 
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Figure 16. Scatter plots of predict MDE values 
using Gaussian membership function versus 
Measured MD values 

 
Table 1.  Observed and predicted values of LA from ANFIS and MLR models along with RPE 
 

Number of 
sample 

DPaFP DPeFP LA 
observed 

LA 
predicted 
by MLR 

RPE by 
MLR 

LA 
predicted 
by ANFIS 

RPE  by 
ANFIS 

cm cm   %  % 
1 3.00 2.20 32.0 29.523 7.742 29.721 7.121 
2 1.09 1.10 22.0 24.657 12.079 24.418 10.990 
3 2.14 0.90 20.0 24.688 23.438 23.477 17.385 
4 2.20 1.20 25.0 25.713 2.851 25.510 2.042 
5 3.60 2.40 31.0 30.573 1.379 30.301 2.255 
6 1.00 1.42 23.0 25.650 11.521 25.611 11.351 
7 1.20 1.07 24.0 24.631 2.628 24.417 1.739 
8 2.80 2.40 30.0 30.049 0.163 30.449 1.497 
9 1.35 1.40 24.0 25.813 7.556 25.976 8.234 
10 2.80 3.00 35.0 32.020 8.513 31.257 10.695 
11 4.60 3.8 38.7 35.828 7.422 37.715 2.546 
12 0.51 0.53 20.7 22.404 8.234 22.097 6.750 
13 1.60 0.80 26.0 24.005 7.671 23.362 10.146 
14 1.24 1.60 25.0 26.398 5.594 26.800 7.200 
15 0.73 0.87 23.0 23.666 2.895 23.258 1.121 
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Table 2. Observed and predicted values of MD from ANFIS and MLR models along with RPE 
 

Number of 
sample 

DPaFP DPeFP MD 
observed 

MD 
predicted 
by MLR 

RPE by 
MLR 

MD 
predicted 
by ANFIS 

RPE by 
ANFIS 

cm cm   %  % 
1 3.00 2.20 14.8 11.987 19.007 12.265 17.130 
2 1.09 1.10 8.2 9.717 18.494 9.400 14.636 
3 2.14 0.90 7.8 9.675 24.041 9.619 23.326 
4 2.20 1.20 10.0 10.172 1.719 10.268 2.681 
5 3.60 2.40 12.0 12.467 3.892 12.211 1.759 
6 1.00 1.42 9.6 10.205 6.306 9.919 3.327 
7 1.20 1.07 10.0 9.698 3.023 9.478 5.224 
8 2.80 2.40 12.5 12.254 1.965 12.887 3.094 
9 1.35 1.40 9.5 10.266 8.067 10.288 8.293 
10 2.80 3.00 14.8 13.216 10.704 13.022 12.017 
11 4.60 3.80 16.2 14.976 7.553 15.800 2.469 
12 0.51 0.53 8.7 8.649 0.587 8.317 4.398 
13 1.60 0.80 10.0 9.371 6.286 9.425 5.755 
14 1.24 1.60 10.3 10.558 2.501 10.720 4.076 
15 0.73 0.87 8.2 9.252 12.832 8.706 6.174 
 
4. Conclusion 
 
In order to reduce the cost and time used to obtain 
the results of the Los Angeles and Micro Deval 
tests in the laboratory we have used the ANFIS 
model. The input parameters of the model are the 
obtained results during the drilling test. This test 
is quick and less expensive. This ANFIS model is 
compared to an MLR model.  
The results showed that the performance of the 
ANFIS model far exceeds that of MLR. 
For instance, the ANFIS, LA yields an R2 of 
0.946, an RMSE of 2.181, an MAPE of 7.144 and 
a VAF of 66.095; meanwhile that of the MLR 
gives an R2 of 0.952, an RMSE of 2.205, an 
MAPE of 7.312 and a VAF of 63.788. 
However, MD provides an R2 of 0.933, an RMSE 
of 1.083, an MAPE of 7.407, and a VAF 65.205 
against the ANFIS approach, meanwhile that of 
the MLR gives an R2 of 0.924, an RMSE of 1.173, 
with an MAPE of 8.465 and a VAF of 52.372.    
The advantages of the ANFIS model lies in the 
fact that it is a combination of two approaches that 
are the neural approach and the logic one. The 
hybrid algorithm that is used to determine the 
optimal parameters of the model. The obtained 
ANFIS models can be used to estimate LA and M 
aggregates in Togo and elsewhere in the world. 
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