The elastic-plastic delamination analysis of layered beam configurations

Authors

  • Victor Rizov University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria

Keywords:

fracture analysis, layered beam, elastic-plastic behavior, delamination, analytical solution

Abstract

The elastic-plastic delamination fracture in layered beams was studied theoretically. Two Four Point Bend (FPB) beam configurations (the Double Leg Four Point Bend (DLFPB) and the Single Leg Four Point Bend (SLFPB)) were analyzed. An elastic-plastic constitutive model with power law hardening was used in the analysis. Fracture behavior was studied by applying the J-integral approach. The analytical solutions of the J-integral were obtained at characteristic levels of the external load. The solutions obtained were verified by analyzing the strain energy release rate with taking into account the material non-linearity. The variation of J-integral value in a function of crack location along the beam dept was investigated. The effect of material non-linearity on the fracture was evaluated. The analysis revealed that the J-integral value decreased with increasing the lower crack arm thickness. It was also found that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of layered materials. The analytical solutions obtained are very useful for non-linear investigations, since the simple formulae derived capture the essentials of non-linear fracture in the layered beams under consideration.

Author Biography

Victor Rizov, University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria

Department of Technical MechanicsProf. Dr.

Downloads

Published

2019-04-15